Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
* vim: set ts=8 sts=2 et sw=2 tw=80:
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
#ifndef jit_CacheIRWriter_h
#define jit_CacheIRWriter_h
#include "mozilla/Assertions.h"
#include "mozilla/Attributes.h"
#include "mozilla/Casting.h"
#include "mozilla/Maybe.h"
#include <stddef.h>
#include <stdint.h>
#include "jstypes.h"
#include "NamespaceImports.h"
#include "gc/AllocKind.h"
#include "jit/ABIFunctions.h"
#include "jit/CacheIR.h"
#include "jit/CacheIROpsGenerated.h"
#include "jit/CompactBuffer.h"
#include "jit/ICState.h"
#include "jit/Simulator.h"
#include "jit/TypeData.h"
#include "js/AllocPolicy.h"
#include "js/CallArgs.h"
#include "js/Class.h"
#include "js/experimental/JitInfo.h"
#include "js/Id.h"
#include "js/RootingAPI.h"
#include "js/ScalarType.h"
#include "js/Value.h"
#include "js/Vector.h"
#include "util/Memory.h"
#include "vm/GuardFuse.h"
#include "vm/JSFunction.h"
#include "vm/JSScript.h"
#include "vm/List.h"
#include "vm/Opcodes.h"
#include "vm/RealmFuses.h"
#include "vm/Shape.h"
#include "vm/TypeofEqOperand.h" // TypeofEqOperand
#include "wasm/WasmConstants.h"
#include "wasm/WasmValType.h"
class JS_PUBLIC_API JSTracer;
struct JS_PUBLIC_API JSContext;
class JSObject;
class JSString;
namespace JS {
class Symbol;
}
namespace js {
class GetterSetter;
enum class UnaryMathFunction : uint8_t;
namespace gc {
class AllocSite;
}
namespace jit {
class ICScript;
// Class to record CacheIR + some additional metadata for code generation.
class MOZ_RAII CacheIRWriter : public JS::CustomAutoRooter {
#ifdef DEBUG
JSContext* cx_;
#endif
CompactBufferWriter buffer_;
uint32_t nextOperandId_;
uint32_t nextInstructionId_;
uint32_t numInputOperands_;
TypeData typeData_;
// The data (shapes, slot offsets, etc.) that will be stored in the ICStub.
Vector<StubField, 8, SystemAllocPolicy> stubFields_;
size_t stubDataSize_;
// For each operand id, record which instruction accessed it last. This
// information greatly improves register allocation.
Vector<uint32_t, 8, SystemAllocPolicy> operandLastUsed_;
// OperandId and stub offsets are stored in a single byte, so make sure
// this doesn't overflow. We use a very conservative limit for now.
static const size_t MaxOperandIds = 20;
static const size_t MaxStubDataSizeInBytes = 20 * sizeof(uintptr_t);
bool tooLarge_;
// Assume this stub can't be trial inlined until we see a scripted call/inline
// instruction.
TrialInliningState trialInliningState_ = TrialInliningState::Failure;
// Basic caching to avoid quadatic lookup behaviour in readStubField.
mutable uint32_t lastOffset_;
mutable uint32_t lastIndex_;
#ifdef DEBUG
// Information for assertLengthMatches.
mozilla::Maybe<CacheOp> currentOp_;
size_t currentOpArgsStart_ = 0;
#endif
#ifdef DEBUG
void assertSameCompartment(JSObject* obj);
void assertSameZone(Shape* shape);
#else
void assertSameCompartment(JSObject* obj) {}
void assertSameZone(Shape* shape) {}
#endif
void writeOp(CacheOp op) {
buffer_.writeFixedUint16_t(uint16_t(op));
nextInstructionId_++;
#ifdef DEBUG
MOZ_ASSERT(currentOp_.isNothing(), "Missing call to assertLengthMatches?");
currentOp_.emplace(op);
currentOpArgsStart_ = buffer_.length();
#endif
}
void assertLengthMatches() {
#ifdef DEBUG
// After writing arguments, assert the length matches CacheIROpArgLengths.
size_t expectedLen = CacheIROpInfos[size_t(*currentOp_)].argLength;
MOZ_ASSERT_IF(!failed(),
buffer_.length() - currentOpArgsStart_ == expectedLen);
currentOp_.reset();
#endif
}
void writeOperandId(OperandId opId) {
if (opId.id() < MaxOperandIds) {
static_assert(MaxOperandIds <= UINT8_MAX,
"operand id must fit in a single byte");
buffer_.writeByte(opId.id());
} else {
tooLarge_ = true;
return;
}
if (opId.id() >= operandLastUsed_.length()) {
buffer_.propagateOOM(operandLastUsed_.resize(opId.id() + 1));
if (buffer_.oom()) {
return;
}
}
MOZ_ASSERT(nextInstructionId_ > 0);
operandLastUsed_[opId.id()] = nextInstructionId_ - 1;
}
void writeCallFlagsImm(CallFlags flags) { buffer_.writeByte(flags.toByte()); }
void addStubField(uint64_t value, StubField::Type fieldType) {
size_t fieldOffset = stubDataSize_;
#ifndef JS_64BIT
// On 32-bit platforms there are two stub field sizes (4 bytes and 8 bytes).
// Ensure 8-byte fields are properly aligned.
if (StubField::sizeIsInt64(fieldType)) {
fieldOffset = AlignBytes(fieldOffset, sizeof(uint64_t));
}
#endif
MOZ_ASSERT((fieldOffset % StubField::sizeInBytes(fieldType)) == 0);
size_t newStubDataSize = fieldOffset + StubField::sizeInBytes(fieldType);
if (newStubDataSize < MaxStubDataSizeInBytes) {
#ifndef JS_64BIT
// Add a RawInt32 stub field for padding if necessary, because when we
// iterate over the stub fields we assume there are no 'holes'.
if (fieldOffset != stubDataSize_) {
MOZ_ASSERT((stubDataSize_ + sizeof(uintptr_t)) == fieldOffset);
buffer_.propagateOOM(
stubFields_.append(StubField(0, StubField::Type::RawInt32)));
}
#endif
buffer_.propagateOOM(stubFields_.append(StubField(value, fieldType)));
MOZ_ASSERT((fieldOffset % sizeof(uintptr_t)) == 0);
buffer_.writeByte(fieldOffset / sizeof(uintptr_t));
stubDataSize_ = newStubDataSize;
} else {
tooLarge_ = true;
}
}
void writeShapeField(Shape* shape) {
MOZ_ASSERT(shape);
assertSameZone(shape);
addStubField(uintptr_t(shape), StubField::Type::Shape);
}
void writeWeakShapeField(Shape* shape) {
MOZ_ASSERT(shape);
assertSameZone(shape);
addStubField(uintptr_t(shape), StubField::Type::WeakShape);
}
void writeWeakGetterSetterField(GetterSetter* gs) {
MOZ_ASSERT(gs);
addStubField(uintptr_t(gs), StubField::Type::WeakGetterSetter);
}
void writeObjectField(JSObject* obj) {
MOZ_ASSERT(obj);
assertSameCompartment(obj);
addStubField(uintptr_t(obj), StubField::Type::JSObject);
}
void writeWeakObjectField(JSObject* obj) {
MOZ_ASSERT(obj);
assertSameCompartment(obj);
addStubField(uintptr_t(obj), StubField::Type::WeakObject);
}
void writeStringField(JSString* str) {
MOZ_ASSERT(str);
addStubField(uintptr_t(str), StubField::Type::String);
}
void writeSymbolField(JS::Symbol* sym) {
MOZ_ASSERT(sym);
addStubField(uintptr_t(sym), StubField::Type::Symbol);
}
void writeWeakBaseScriptField(BaseScript* script) {
MOZ_ASSERT(script);
addStubField(uintptr_t(script), StubField::Type::WeakBaseScript);
}
void writeJitCodeField(JitCode* code) {
MOZ_ASSERT(code);
addStubField(uintptr_t(code), StubField::Type::JitCode);
}
void writeRawInt32Field(uint32_t val) {
addStubField(val, StubField::Type::RawInt32);
}
void writeRawPointerField(const void* ptr) {
addStubField(uintptr_t(ptr), StubField::Type::RawPointer);
}
void writeIdField(jsid id) {
addStubField(id.asRawBits(), StubField::Type::Id);
}
void writeValueField(const Value& val) {
addStubField(val.asRawBits(), StubField::Type::Value);
}
void writeRawInt64Field(uint64_t val) {
addStubField(val, StubField::Type::RawInt64);
}
void writeDoubleField(double d) {
uint64_t bits = mozilla::BitwiseCast<uint64_t>(d);
addStubField(bits, StubField::Type::Double);
}
void writeAllocSiteField(gc::AllocSite* ptr) {
addStubField(uintptr_t(ptr), StubField::Type::AllocSite);
}
void writeJSOpImm(JSOp op) {
static_assert(sizeof(JSOp) == sizeof(uint8_t), "JSOp must fit in a byte");
buffer_.writeByte(uint8_t(op));
}
void writeTypeofEqOperandImm(TypeofEqOperand operand) {
buffer_.writeByte(operand.rawValue());
}
void writeGuardClassKindImm(GuardClassKind kind) {
static_assert(sizeof(GuardClassKind) == sizeof(uint8_t),
"GuardClassKind must fit in a byte");
buffer_.writeByte(uint8_t(kind));
}
void writeArrayBufferViewKindImm(ArrayBufferViewKind kind) {
static_assert(sizeof(ArrayBufferViewKind) == sizeof(uint8_t),
"ArrayBufferViewKind must fit in a byte");
buffer_.writeByte(uint8_t(kind));
}
void writeValueTypeImm(ValueType type) {
static_assert(sizeof(ValueType) == sizeof(uint8_t),
"ValueType must fit in uint8_t");
buffer_.writeByte(uint8_t(type));
}
void writeJSWhyMagicImm(JSWhyMagic whyMagic) {
static_assert(JS_WHY_MAGIC_COUNT <= UINT8_MAX,
"JSWhyMagic must fit in uint8_t");
buffer_.writeByte(uint8_t(whyMagic));
}
void writeScalarTypeImm(Scalar::Type type) {
MOZ_ASSERT(size_t(type) <= UINT8_MAX);
buffer_.writeByte(uint8_t(type));
}
void writeUnaryMathFunctionImm(UnaryMathFunction fun) {
static_assert(sizeof(UnaryMathFunction) == sizeof(uint8_t),
"UnaryMathFunction must fit in a byte");
buffer_.writeByte(uint8_t(fun));
}
void writeCompletionKindImm(CompletionKind kind) {
static_assert(sizeof(CompletionKind) == sizeof(uint8_t),
"CompletionKind must fit in a byte");
buffer_.writeByte(uint8_t(kind));
}
void writeBoolImm(bool b) { buffer_.writeByte(uint32_t(b)); }
void writeRealmFuseIndexImm(RealmFuses::FuseIndex realmFuseIndex) {
static_assert(sizeof(RealmFuses::FuseIndex) == sizeof(uint8_t),
"RealmFuses::FuseIndex must fit in a byte");
buffer_.writeByte(uint8_t(realmFuseIndex));
}
void writeByteImm(uint32_t b) {
MOZ_ASSERT(b <= UINT8_MAX);
buffer_.writeByte(b);
}
void writeInt32Imm(int32_t i32) { buffer_.writeFixedUint32_t(i32); }
void writeUInt32Imm(uint32_t u32) { buffer_.writeFixedUint32_t(u32); }
void writePointer(const void* ptr) { buffer_.writeRawPointer(ptr); }
void writeJSNativeImm(JSNative native) {
writePointer(JS_FUNC_TO_DATA_PTR(void*, native));
}
void writeStaticStringImm(const char* str) { writePointer(str); }
void writeWasmValTypeImm(wasm::ValType::Kind kind) {
static_assert(unsigned(wasm::TypeCode::Limit) <= UINT8_MAX);
buffer_.writeByte(uint8_t(kind));
}
void writeAllocKindImm(gc::AllocKind kind) {
static_assert(unsigned(gc::AllocKind::LIMIT) <= UINT8_MAX);
buffer_.writeByte(uint8_t(kind));
}
uint32_t newOperandId() { return nextOperandId_++; }
CacheIRWriter(const CacheIRWriter&) = delete;
CacheIRWriter& operator=(const CacheIRWriter&) = delete;
public:
explicit CacheIRWriter(JSContext* cx)
: CustomAutoRooter(cx),
#ifdef DEBUG
cx_(cx),
#endif
nextOperandId_(0),
nextInstructionId_(0),
numInputOperands_(0),
stubDataSize_(0),
tooLarge_(false),
lastOffset_(0),
lastIndex_(0) {
}
bool tooLarge() const { return tooLarge_; }
bool oom() const { return buffer_.oom(); }
bool failed() const { return tooLarge() || oom(); }
TrialInliningState trialInliningState() const { return trialInliningState_; }
uint32_t numInputOperands() const { return numInputOperands_; }
uint32_t numOperandIds() const { return nextOperandId_; }
uint32_t numInstructions() const { return nextInstructionId_; }
size_t numStubFields() const { return stubFields_.length(); }
StubField::Type stubFieldType(uint32_t i) const {
return stubFields_[i].type();
}
uint32_t setInputOperandId(uint32_t op) {
MOZ_ASSERT(op == nextOperandId_);
nextOperandId_++;
numInputOperands_++;
return op;
}
TypeData typeData() const { return typeData_; }
void setTypeData(TypeData data) { typeData_ = data; }
void trace(JSTracer* trc) override {
// For now, assert we only GC before we append stub fields.
MOZ_RELEASE_ASSERT(stubFields_.empty());
}
size_t stubDataSize() const { return stubDataSize_; }
void copyStubData(uint8_t* dest) const;
bool stubDataEquals(const uint8_t* stubData) const;
bool stubDataEqualsIgnoring(const uint8_t* stubData,
uint32_t ignoreOffset) const;
bool operandIsDead(uint32_t operandId, uint32_t currentInstruction) const {
if (operandId >= operandLastUsed_.length()) {
return false;
}
return currentInstruction > operandLastUsed_[operandId];
}
const uint8_t* codeStart() const {
MOZ_ASSERT(!failed());
return buffer_.buffer();
}
const uint8_t* codeEnd() const {
MOZ_ASSERT(!failed());
return buffer_.buffer() + buffer_.length();
}
uint32_t codeLength() const {
MOZ_ASSERT(!failed());
return buffer_.length();
}
// This should not be used when compiling Baseline code, as Baseline code
// shouldn't bake in stub values.
StubField readStubField(uint32_t offset, StubField::Type type) const;
ObjOperandId guardToObject(ValOperandId input) {
guardToObject_(input);
return ObjOperandId(input.id());
}
StringOperandId guardToString(ValOperandId input) {
guardToString_(input);
return StringOperandId(input.id());
}
SymbolOperandId guardToSymbol(ValOperandId input) {
guardToSymbol_(input);
return SymbolOperandId(input.id());
}
BigIntOperandId guardToBigInt(ValOperandId input) {
guardToBigInt_(input);
return BigIntOperandId(input.id());
}
BooleanOperandId guardToBoolean(ValOperandId input) {
guardToBoolean_(input);
return BooleanOperandId(input.id());
}
Int32OperandId guardToInt32(ValOperandId input) {
guardToInt32_(input);
return Int32OperandId(input.id());
}
NumberOperandId guardIsNumber(ValOperandId input) {
guardIsNumber_(input);
return NumberOperandId(input.id());
}
StringOperandId stringToAtom(StringOperandId input) {
stringToAtom_(input);
return input;
}
ValOperandId boxObject(ObjOperandId input) {
return ValOperandId(input.id());
}
void guardShapeForClass(ObjOperandId obj, Shape* shape) {
// Guard shape to ensure that object class is unchanged. This is true
// for all shapes.
guardShape(obj, shape);
}
void guardShapeForOwnProperties(ObjOperandId obj, Shape* shape) {
// Guard shape to detect changes to (non-dense) own properties. This
// also implies |guardShapeForClass|.
MOZ_ASSERT(shape->getObjectClass()->isNativeObject());
guardShape(obj, shape);
}
public:
void guardSpecificFunction(ObjOperandId obj, JSFunction* expected) {
// Guard object is a specific function. This implies immutable fields on
// the JSFunction struct itself are unchanged.
// Bake in the nargs and FunctionFlags so Warp can use them off-main thread,
// instead of directly using the JSFunction fields.
uint32_t nargsAndFlags = expected->flagsAndArgCountRaw();
guardSpecificFunction_(obj, expected, nargsAndFlags);
}
void guardFunctionScript(ObjOperandId fun, BaseScript* expected) {
// Guard function has a specific BaseScript. This implies immutable fields
// on the JSFunction struct itself are unchanged and are equivalent for
// lambda clones.
// Bake in the nargs and FunctionFlags so Warp can use them off-main thread,
// instead of directly using the JSFunction fields.
uint32_t nargsAndFlags = expected->function()->flagsAndArgCountRaw();
guardFunctionScript_(fun, expected, nargsAndFlags);
}
ValOperandId loadArgumentFixedSlot(
ArgumentKind kind, uint32_t argc,
CallFlags flags = CallFlags(CallFlags::Standard)) {
bool addArgc;
int32_t slotIndex = GetIndexOfArgument(kind, flags, &addArgc);
if (addArgc) {
slotIndex += argc;
}
MOZ_ASSERT(slotIndex >= 0);
MOZ_RELEASE_ASSERT(slotIndex <= UINT8_MAX);
return loadArgumentFixedSlot_(slotIndex);
}
ValOperandId loadArgumentDynamicSlot(
ArgumentKind kind, Int32OperandId argcId,
CallFlags flags = CallFlags(CallFlags::Standard)) {
bool addArgc;
int32_t slotIndex = GetIndexOfArgument(kind, flags, &addArgc);
if (addArgc) {
return loadArgumentDynamicSlot_(argcId, slotIndex);
}
return loadArgumentFixedSlot_(slotIndex);
}
ObjOperandId loadSpreadArgs() {
ArgumentKind kind = ArgumentKind::Arg0;
uint32_t argc = 1;
CallFlags flags(CallFlags::Spread);
return ObjOperandId(loadArgumentFixedSlot(kind, argc, flags).id());
}
void callScriptedFunction(ObjOperandId callee, Int32OperandId argc,
CallFlags flags, uint32_t argcFixed) {
callScriptedFunction_(callee, argc, flags, argcFixed);
trialInliningState_ = TrialInliningState::Candidate;
}
void callInlinedFunction(ObjOperandId callee, Int32OperandId argc,
ICScript* icScript, CallFlags flags,
uint32_t argcFixed) {
callInlinedFunction_(callee, argc, icScript, flags, argcFixed);
trialInliningState_ = TrialInliningState::Inlined;
}
void callNativeFunction(ObjOperandId calleeId, Int32OperandId argc, JSOp op,
JSFunction* calleeFunc, CallFlags flags,
uint32_t argcFixed) {
// Some native functions can be implemented faster if we know that
// the return value is ignored.
bool ignoresReturnValue =
op == JSOp::CallIgnoresRv && calleeFunc->hasJitInfo() &&
calleeFunc->jitInfo()->type() == JSJitInfo::IgnoresReturnValueNative;
#ifdef JS_SIMULATOR
// The simulator requires VM calls to be redirected to a special
// swi instruction to handle them, so we store the redirected
// pointer in the stub and use that instead of the original one.
// If we are calling the ignoresReturnValue version of a native
// function, we bake it into the redirected pointer.
// (See BaselineCacheIRCompiler::emitCallNativeFunction.)
JSNative target = ignoresReturnValue
? calleeFunc->jitInfo()->ignoresReturnValueMethod
: calleeFunc->native();
void* rawPtr = JS_FUNC_TO_DATA_PTR(void*, target);
void* redirected = Simulator::RedirectNativeFunction(rawPtr, Args_General3);
callNativeFunction_(calleeId, argc, flags, argcFixed, redirected);
#else
// If we are not running in the simulator, we generate different jitcode
// to find the ignoresReturnValue version of a native function.
callNativeFunction_(calleeId, argc, flags, argcFixed, ignoresReturnValue);
#endif
}
void callDOMFunction(ObjOperandId calleeId, Int32OperandId argc,
ObjOperandId thisObjId, JSFunction* calleeFunc,
CallFlags flags, uint32_t argcFixed) {
#ifdef JS_SIMULATOR
void* rawPtr = JS_FUNC_TO_DATA_PTR(void*, calleeFunc->native());
void* redirected = Simulator::RedirectNativeFunction(rawPtr, Args_General3);
callDOMFunction_(calleeId, argc, thisObjId, flags, argcFixed, redirected);
#else
callDOMFunction_(calleeId, argc, thisObjId, flags, argcFixed);
#endif
}
void callDOMFunctionWithAllocSite(ObjOperandId calleeId, Int32OperandId argc,
ObjOperandId thisObjId,
JSFunction* calleeFunc, CallFlags flags,
uint32_t argcFixed,
gc::AllocSite* allocSite) {
#ifdef JS_SIMULATOR
void* rawPtr = JS_FUNC_TO_DATA_PTR(void*, calleeFunc->native());
void* redirected = Simulator::RedirectNativeFunction(rawPtr, Args_General3);
callDOMFunctionWithAllocSite_(calleeId, argc, thisObjId, flags, argcFixed,
allocSite, redirected);
#else
callDOMFunctionWithAllocSite_(calleeId, argc, thisObjId, flags, argcFixed,
allocSite);
#endif
}
void callAnyNativeFunction(ObjOperandId calleeId, Int32OperandId argc,
CallFlags flags, uint32_t argcFixed) {
MOZ_ASSERT(!flags.isSameRealm());
#ifdef JS_SIMULATOR
const void* redirected = RedirectedCallAnyNative();
callNativeFunction_(calleeId, argc, flags, argcFixed, redirected);
#else
callNativeFunction_(calleeId, argc, flags, argcFixed,
/* ignoresReturnValue = */ false);
#endif
}
void callClassHook(ObjOperandId calleeId, Int32OperandId argc, JSNative hook,
CallFlags flags, uint32_t argcFixed) {
MOZ_ASSERT(!flags.isSameRealm());
void* target = JS_FUNC_TO_DATA_PTR(void*, hook);
#ifdef JS_SIMULATOR
// The simulator requires VM calls to be redirected to a special
// swi instruction to handle them, so we store the redirected
// pointer in the stub and use that instead of the original one.
target = Simulator::RedirectNativeFunction(target, Args_General3);
#endif
callClassHook_(calleeId, argc, flags, argcFixed, target);
}
void callScriptedGetterResult(ValOperandId receiver, JSFunction* getter,
bool sameRealm) {
MOZ_ASSERT(getter->hasJitEntry());
uint32_t nargsAndFlags = getter->flagsAndArgCountRaw();
callScriptedGetterResult_(receiver, getter, sameRealm, nargsAndFlags);
trialInliningState_ = TrialInliningState::Candidate;
}
void callInlinedGetterResult(ValOperandId receiver, JSFunction* getter,
ICScript* icScript, bool sameRealm) {
MOZ_ASSERT(getter->hasJitEntry());
uint32_t nargsAndFlags = getter->flagsAndArgCountRaw();
callInlinedGetterResult_(receiver, getter, icScript, sameRealm,
nargsAndFlags);
trialInliningState_ = TrialInliningState::Inlined;
}
void callNativeGetterResult(ValOperandId receiver, JSFunction* getter,
bool sameRealm) {
MOZ_ASSERT(getter->isNativeWithoutJitEntry());
uint32_t nargsAndFlags = getter->flagsAndArgCountRaw();
callNativeGetterResult_(receiver, getter, sameRealm, nargsAndFlags);
}
void callScriptedSetter(ObjOperandId receiver, JSFunction* setter,
ValOperandId rhs, bool sameRealm) {
MOZ_ASSERT(setter->hasJitEntry());
uint32_t nargsAndFlags = setter->flagsAndArgCountRaw();
callScriptedSetter_(receiver, setter, rhs, sameRealm, nargsAndFlags);
trialInliningState_ = TrialInliningState::Candidate;
}
void callInlinedSetter(ObjOperandId receiver, JSFunction* setter,
ValOperandId rhs, ICScript* icScript, bool sameRealm) {
MOZ_ASSERT(setter->hasJitEntry());
uint32_t nargsAndFlags = setter->flagsAndArgCountRaw();
callInlinedSetter_(receiver, setter, rhs, icScript, sameRealm,
nargsAndFlags);
trialInliningState_ = TrialInliningState::Inlined;
}
void callNativeSetter(ObjOperandId receiver, JSFunction* setter,
ValOperandId rhs, bool sameRealm) {
MOZ_ASSERT(setter->isNativeWithoutJitEntry());
uint32_t nargsAndFlags = setter->flagsAndArgCountRaw();
callNativeSetter_(receiver, setter, rhs, sameRealm, nargsAndFlags);
}
#ifdef JS_PUNBOX64
void callScriptedProxyGetResult(ValOperandId target, ObjOperandId receiver,
ObjOperandId handler, ObjOperandId trapId,
JSFunction* trap, HandleId property) {
MOZ_ASSERT(trap->hasJitEntry());
uint32_t nargsAndFlags = trap->flagsAndArgCountRaw();
callScriptedProxyGetResult_(target, receiver, handler, trapId, property,
nargsAndFlags);
}
void callScriptedProxyGetByValueResult(
ValOperandId target, ObjOperandId receiver, ObjOperandId handler,
ValOperandId property, ObjOperandId trapId, JSFunction* trap) {
MOZ_ASSERT(trap->hasJitEntry());
uint32_t nargsAndFlags = trap->flagsAndArgCountRaw();
callScriptedProxyGetByValueResult_(target, receiver, handler, property,
trapId, nargsAndFlags);
}
#endif
void metaScriptedThisShape(Shape* thisShape) {
metaScriptedThisShape_(thisShape);
}
void guardMultipleShapes(ObjOperandId obj, ListObject* shapes) {
MOZ_ASSERT(shapes->length() > 0);
guardMultipleShapes_(obj, shapes);
}
friend class CacheIRCloner;
CACHE_IR_WRITER_GENERATED
};
} // namespace jit
} // namespace js
#endif /* jit_CacheIRWriter_h */