Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this file,
* You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "gtest/gtest.h"
#include "Colorspaces.h"
#include <array>
#include <limits>
namespace mozilla::color {
mat4 YuvFromYcbcr(const YcbcrDesc&);
float TfFromLinear(const PiecewiseGammaDesc&, float linear);
float LinearFromTf(const PiecewiseGammaDesc&, float tf);
mat3 XyzFromLinearRgb(const Chromaticities&);
} // namespace mozilla::color
using namespace mozilla::color;
auto Calc8From8(const ColorspaceTransform& ct, const ivec3 in8) {
const auto in = vec3(in8) / vec3(255);
const auto out = ct.DstFromSrc(in);
const auto out8 = ivec3(round(out * vec3(255)));
return out8;
}
auto Sample8From8(const Lut3& lut, const vec3 in8) {
const auto in = in8 / vec3(255);
const auto out = lut.Sample(in);
const auto out8 = ivec3(round(out * vec3(255)));
return out8;
}
TEST(Colorspaces, YcbcrDesc_Narrow8)
{
const auto m = YuvFromYcbcr(YcbcrDesc::Narrow8());
const auto Yuv8 = [&](const ivec3 ycbcr8) {
const auto ycbcr = vec4(vec3(ycbcr8) / 255, 1);
const auto yuv = m * ycbcr;
return ivec3(round(yuv * 255));
};
EXPECT_EQ(Yuv8({{16, 128, 128}}), (ivec3{{0, 0, 0}}));
EXPECT_EQ(Yuv8({{17, 128, 128}}), (ivec3{{1, 0, 0}}));
// y = 0.5 => (16 + 235) / 2 = 125.5
EXPECT_EQ(Yuv8({{125, 128, 128}}), (ivec3{{127, 0, 0}}));
EXPECT_EQ(Yuv8({{126, 128, 128}}), (ivec3{{128, 0, 0}}));
EXPECT_EQ(Yuv8({{234, 128, 128}}), (ivec3{{254, 0, 0}}));
EXPECT_EQ(Yuv8({{235, 128, 128}}), (ivec3{{255, 0, 0}}));
// Check that we get the naive out-of-bounds behavior we'd expect:
EXPECT_EQ(Yuv8({{15, 128, 128}}), (ivec3{{-1, 0, 0}}));
EXPECT_EQ(Yuv8({{236, 128, 128}}), (ivec3{{256, 0, 0}}));
}
TEST(Colorspaces, YcbcrDesc_Full8)
{
const auto m = YuvFromYcbcr(YcbcrDesc::Full8());
const auto Yuv8 = [&](const ivec3 ycbcr8) {
const auto ycbcr = vec4(vec3(ycbcr8) / 255, 1);
const auto yuv = m * ycbcr;
return ivec3(round(yuv * 255));
};
EXPECT_EQ(Yuv8({{0, 128, 128}}), (ivec3{{0, 0, 0}}));
EXPECT_EQ(Yuv8({{1, 128, 128}}), (ivec3{{1, 0, 0}}));
EXPECT_EQ(Yuv8({{127, 128, 128}}), (ivec3{{127, 0, 0}}));
EXPECT_EQ(Yuv8({{128, 128, 128}}), (ivec3{{128, 0, 0}}));
EXPECT_EQ(Yuv8({{254, 128, 128}}), (ivec3{{254, 0, 0}}));
EXPECT_EQ(Yuv8({{255, 128, 128}}), (ivec3{{255, 0, 0}}));
}
TEST(Colorspaces, YcbcrDesc_Float)
{
const auto m = YuvFromYcbcr(YcbcrDesc::Float());
const auto Yuv8 = [&](const vec3 ycbcr8) {
const auto ycbcr = vec4(vec3(ycbcr8) / 255, 1);
const auto yuv = m * ycbcr;
return ivec3(round(yuv * 255));
};
EXPECT_EQ(Yuv8({{0, 0.5 * 255, 0.5 * 255}}), (ivec3{{0, 0, 0}}));
EXPECT_EQ(Yuv8({{1, 0.5 * 255, 0.5 * 255}}), (ivec3{{1, 0, 0}}));
EXPECT_EQ(Yuv8({{127, 0.5 * 255, 0.5 * 255}}), (ivec3{{127, 0, 0}}));
EXPECT_EQ(Yuv8({{128, 0.5 * 255, 0.5 * 255}}), (ivec3{{128, 0, 0}}));
EXPECT_EQ(Yuv8({{254, 0.5 * 255, 0.5 * 255}}), (ivec3{{254, 0, 0}}));
EXPECT_EQ(Yuv8({{255, 0.5 * 255, 0.5 * 255}}), (ivec3{{255, 0, 0}}));
}
TEST(Colorspaces, ColorspaceTransform_Rec709Narrow)
{
const auto src = ColorspaceDesc{
Chromaticities::Rec709(),
PiecewiseGammaDesc::Rec709(),
{{YuvLumaCoeffs::Rec709(), YcbcrDesc::Narrow8()}},
};
const auto dst = ColorspaceDesc{
Chromaticities::Rec709(),
PiecewiseGammaDesc::Rec709(),
{},
};
const auto ct = ColorspaceTransform::Create(src, dst);
EXPECT_EQ(Calc8From8(ct, {{16, 128, 128}}), (ivec3{0}));
EXPECT_EQ(Calc8From8(ct, {{17, 128, 128}}), (ivec3{1}));
EXPECT_EQ(Calc8From8(ct, {{126, 128, 128}}), (ivec3{128}));
EXPECT_EQ(Calc8From8(ct, {{234, 128, 128}}), (ivec3{254}));
EXPECT_EQ(Calc8From8(ct, {{235, 128, 128}}), (ivec3{255}));
// Check that we get the naive out-of-bounds behavior we'd expect:
EXPECT_EQ(Calc8From8(ct, {{15, 128, 128}}), (ivec3{-1}));
EXPECT_EQ(Calc8From8(ct, {{236, 128, 128}}), (ivec3{256}));
}
TEST(Colorspaces, LutSample_Rec709Float)
{
const auto src = ColorspaceDesc{
Chromaticities::Rec709(),
PiecewiseGammaDesc::Rec709(),
{{YuvLumaCoeffs::Rec709(), YcbcrDesc::Float()}},
};
const auto dst = ColorspaceDesc{
Chromaticities::Rec709(),
PiecewiseGammaDesc::Rec709(),
{},
};
const auto lut = ColorspaceTransform::Create(src, dst).ToLut3();
EXPECT_EQ(Sample8From8(lut, {{0, 0.5 * 255, 0.5 * 255}}), (ivec3{0}));
EXPECT_EQ(Sample8From8(lut, {{1, 0.5 * 255, 0.5 * 255}}), (ivec3{1}));
EXPECT_EQ(Sample8From8(lut, {{127, 0.5 * 255, 0.5 * 255}}), (ivec3{127}));
EXPECT_EQ(Sample8From8(lut, {{128, 0.5 * 255, 0.5 * 255}}), (ivec3{128}));
EXPECT_EQ(Sample8From8(lut, {{254, 0.5 * 255, 0.5 * 255}}), (ivec3{254}));
EXPECT_EQ(Sample8From8(lut, {{255, 0.5 * 255, 0.5 * 255}}), (ivec3{255}));
}
TEST(Colorspaces, LutSample_Rec709Narrow)
{
const auto src = ColorspaceDesc{
Chromaticities::Rec709(),
PiecewiseGammaDesc::Rec709(),
{{YuvLumaCoeffs::Rec709(), YcbcrDesc::Narrow8()}},
};
const auto dst = ColorspaceDesc{
Chromaticities::Rec709(),
PiecewiseGammaDesc::Rec709(),
{},
};
const auto lut = ColorspaceTransform::Create(src, dst).ToLut3();
EXPECT_EQ(Sample8From8(lut, {{16, 128, 128}}), (ivec3{0}));
EXPECT_EQ(Sample8From8(lut, {{17, 128, 128}}), (ivec3{1}));
EXPECT_EQ(Sample8From8(lut, {{int((235 + 16) / 2), 128, 128}}), (ivec3{127}));
EXPECT_EQ(Sample8From8(lut, {{int((235 + 16) / 2) + 1, 128, 128}}),
(ivec3{128}));
EXPECT_EQ(Sample8From8(lut, {{234, 128, 128}}), (ivec3{254}));
EXPECT_EQ(Sample8From8(lut, {{235, 128, 128}}), (ivec3{255}));
}
TEST(Colorspaces, LutSample_Rec709Full)
{
const auto src = ColorspaceDesc{
Chromaticities::Rec709(),
PiecewiseGammaDesc::Rec709(),
{{YuvLumaCoeffs::Rec709(), YcbcrDesc::Full8()}},
};
const auto dst = ColorspaceDesc{
Chromaticities::Rec709(),
PiecewiseGammaDesc::Rec709(),
{},
};
const auto lut = ColorspaceTransform::Create(src, dst).ToLut3();
EXPECT_EQ(Sample8From8(lut, {{0, 128, 128}}), (ivec3{0}));
EXPECT_EQ(Sample8From8(lut, {{1, 128, 128}}), (ivec3{1}));
EXPECT_EQ(Sample8From8(lut, {{16, 128, 128}}), (ivec3{16}));
EXPECT_EQ(Sample8From8(lut, {{128, 128, 128}}), (ivec3{128}));
EXPECT_EQ(Sample8From8(lut, {{235, 128, 128}}), (ivec3{235}));
EXPECT_EQ(Sample8From8(lut, {{254, 128, 128}}), (ivec3{254}));
EXPECT_EQ(Sample8From8(lut, {{255, 128, 128}}), (ivec3{255}));
}
TEST(Colorspaces, PiecewiseGammaDesc_Srgb)
{
const auto tf = PiecewiseGammaDesc::Srgb();
EXPECT_EQ(int(roundf(TfFromLinear(tf, 0x00 / 255.0) * 255)), 0x00);
EXPECT_EQ(int(roundf(TfFromLinear(tf, 0x01 / 255.0) * 255)), 0x0d);
EXPECT_EQ(int(roundf(TfFromLinear(tf, 0x37 / 255.0) * 255)), 0x80);
EXPECT_EQ(int(roundf(TfFromLinear(tf, 0x80 / 255.0) * 255)), 0xbc);
EXPECT_EQ(int(roundf(TfFromLinear(tf, 0xfd / 255.0) * 255)), 0xfe);
EXPECT_EQ(int(roundf(TfFromLinear(tf, 0xfe / 255.0) * 255)), 0xff);
EXPECT_EQ(int(roundf(TfFromLinear(tf, 0xff / 255.0) * 255)), 0xff);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0x00 / 255.0) * 255)), 0x00);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0x01 / 255.0) * 255)), 0x00);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0x06 / 255.0) * 255)), 0x00);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0x07 / 255.0) * 255)), 0x01);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0x0d / 255.0) * 255)), 0x01);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0x80 / 255.0) * 255)), 0x37);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0xbc / 255.0) * 255)), 0x80);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0xfe / 255.0) * 255)), 0xfd);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0xff / 255.0) * 255)), 0xff);
}
TEST(Colorspaces, PiecewiseGammaDesc_Rec709)
{
const auto tf = PiecewiseGammaDesc::Rec709();
EXPECT_EQ(int(roundf(TfFromLinear(tf, 0x00 / 255.0) * 255)), 0x00);
EXPECT_EQ(int(roundf(TfFromLinear(tf, 0x01 / 255.0) * 255)), 0x05);
EXPECT_EQ(int(roundf(TfFromLinear(tf, 0x43 / 255.0) * 255)), 0x80);
EXPECT_EQ(int(roundf(TfFromLinear(tf, 0x80 / 255.0) * 255)), 0xb4);
EXPECT_EQ(int(roundf(TfFromLinear(tf, 0xfd / 255.0) * 255)), 0xfe);
EXPECT_EQ(int(roundf(TfFromLinear(tf, 0xfe / 255.0) * 255)), 0xff);
EXPECT_EQ(int(roundf(TfFromLinear(tf, 0xff / 255.0) * 255)), 0xff);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0x00 / 255.0) * 255)), 0x00);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0x01 / 255.0) * 255)), 0x00);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0x02 / 255.0) * 255)), 0x00);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0x03 / 255.0) * 255)), 0x01);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0x05 / 255.0) * 255)), 0x01);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0x80 / 255.0) * 255)), 0x43);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0xb4 / 255.0) * 255)), 0x80);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0xfe / 255.0) * 255)), 0xfd);
EXPECT_EQ(int(roundf(LinearFromTf(tf, 0xff / 255.0) * 255)), 0xff);
}
TEST(Colorspaces, ColorspaceTransform_PiecewiseGammaDesc)
{
const auto src = ColorspaceDesc{
Chromaticities::Srgb(),
{},
{},
};
const auto dst = ColorspaceDesc{
Chromaticities::Srgb(),
PiecewiseGammaDesc::Srgb(),
{},
};
const auto toGamma = ColorspaceTransform::Create(src, dst);
const auto toLinear = ColorspaceTransform::Create(dst, src);
EXPECT_EQ(Calc8From8(toGamma, ivec3{0x00}), (ivec3{0x00}));
EXPECT_EQ(Calc8From8(toGamma, ivec3{0x01}), (ivec3{0x0d}));
EXPECT_EQ(Calc8From8(toGamma, ivec3{0x37}), (ivec3{0x80}));
EXPECT_EQ(Calc8From8(toGamma, ivec3{0x80}), (ivec3{0xbc}));
EXPECT_EQ(Calc8From8(toGamma, ivec3{0xfd}), (ivec3{0xfe}));
EXPECT_EQ(Calc8From8(toGamma, ivec3{0xff}), (ivec3{0xff}));
EXPECT_EQ(Calc8From8(toLinear, ivec3{0x00}), (ivec3{0x00}));
EXPECT_EQ(Calc8From8(toLinear, ivec3{0x0d}), (ivec3{0x01}));
EXPECT_EQ(Calc8From8(toLinear, ivec3{0x80}), (ivec3{0x37}));
EXPECT_EQ(Calc8From8(toLinear, ivec3{0xbc}), (ivec3{0x80}));
EXPECT_EQ(Calc8From8(toLinear, ivec3{0xfe}), (ivec3{0xfd}));
EXPECT_EQ(Calc8From8(toLinear, ivec3{0xff}), (ivec3{0xff}));
}
// -
// Actual end-to-end tests
TEST(Colorspaces, SrgbFromRec709)
{
const auto src = ColorspaceDesc{
Chromaticities::Rec709(),
PiecewiseGammaDesc::Rec709(),
{{YuvLumaCoeffs::Rec709(), YcbcrDesc::Narrow8()}},
};
const auto dst = ColorspaceDesc{
Chromaticities::Srgb(),
PiecewiseGammaDesc::Srgb(),
{},
};
const auto ct = ColorspaceTransform::Create(src, dst);
EXPECT_EQ(Calc8From8(ct, ivec3{{16, 128, 128}}), (ivec3{0}));
EXPECT_EQ(Calc8From8(ct, ivec3{{17, 128, 128}}), (ivec3{3}));
EXPECT_EQ(Calc8From8(ct, ivec3{{115, 128, 128}}), (ivec3{128}));
EXPECT_EQ(Calc8From8(ct, ivec3{{126, 128, 128}}), (ivec3{140}));
EXPECT_EQ(Calc8From8(ct, ivec3{{234, 128, 128}}), (ivec3{254}));
EXPECT_EQ(Calc8From8(ct, ivec3{{235, 128, 128}}), (ivec3{255}));
}
TEST(Colorspaces, SrgbFromDisplayP3)
{
const auto p3C = ColorspaceDesc{
Chromaticities::DisplayP3(),
PiecewiseGammaDesc::DisplayP3(),
};
const auto srgbC = ColorspaceDesc{
Chromaticities::Srgb(),
PiecewiseGammaDesc::Srgb(),
};
const auto srgbLinearC = ColorspaceDesc{
Chromaticities::Srgb(),
{},
};
const auto srgbFromP3 = ColorspaceTransform::Create(p3C, srgbC);
const auto srgbLinearFromP3 = ColorspaceTransform::Create(p3C, srgbLinearC);
// E.g.
auto srgb = srgbFromP3.DstFromSrc(vec3{{0.4, 0.8, 0.4}});
EXPECT_NEAR(srgb.x(), 0.179, 0.001);
EXPECT_NEAR(srgb.y(), 0.812, 0.001);
EXPECT_NEAR(srgb.z(), 0.342, 0.001);
auto srgbLinear = srgbLinearFromP3.DstFromSrc(vec3{{0.4, 0.8, 0.4}});
EXPECT_NEAR(srgbLinear.x(), 0.027, 0.001);
EXPECT_NEAR(srgbLinear.y(), 0.624, 0.001);
EXPECT_NEAR(srgbLinear.z(), 0.096, 0.001);
}
TEST(Colorspaces, DisplayP3FromSrgb)
{
const auto p3C = ColorspaceDesc{
Chromaticities::DisplayP3(),
PiecewiseGammaDesc::DisplayP3(),
};
const auto srgbC = ColorspaceDesc{
Chromaticities::Srgb(),
PiecewiseGammaDesc::Srgb(),
};
const auto p3FromSrgb = ColorspaceTransform::Create(srgbC, p3C);
// E.g.
auto p3 = p3FromSrgb.DstFromSrc(vec3{{0.4, 0.8, 0.4}});
EXPECT_NEAR(p3.x(), 0.502, 0.001);
EXPECT_NEAR(p3.y(), 0.791, 0.001);
EXPECT_NEAR(p3.z(), 0.445, 0.001);
}
// -
template <class Fn, class Tuple, size_t... I>
constexpr auto map_tups_seq(const Tuple& a, const Tuple& b, const Fn& fn,
std::index_sequence<I...>) {
return std::tuple{fn(std::get<I>(a), std::get<I>(b))...};
}
template <class Fn, class Tuple>
constexpr auto map_tups(const Tuple& a, const Tuple& b, const Fn& fn) {
return map_tups_seq(a, b, fn,
std::make_index_sequence<std::tuple_size_v<Tuple>>{});
}
template <class Fn, class Tuple>
constexpr auto cmp_tups_all(const Tuple& a, const Tuple& b, const Fn& fn) {
bool all = true;
map_tups(a, b, [&](const auto& a, const auto& b) { return all &= fn(a, b); });
return all;
}
struct Stats {
double mean = 0;
double variance = 0;
double min = std::numeric_limits<double>::infinity();
double max = -std::numeric_limits<double>::infinity();
template <class T>
static Stats For(const T& iterable) {
auto ret = Stats{};
for (const auto& cur : iterable) {
ret.mean += cur;
ret.min = std::min(ret.min, cur);
ret.max = std::max(ret.max, cur);
}
ret.mean /= iterable.size();
// Gather mean first before we can calc variance.
for (const auto& cur : iterable) {
ret.variance += pow(cur - ret.mean, 2);
}
ret.variance /= iterable.size();
return ret;
}
template <class T, class U>
static Stats Diff(const T& a, const U& b) {
MOZ_ASSERT(a.size() == b.size());
std::vector<double> diff;
diff.reserve(a.size());
for (size_t i = 0; i < diff.capacity(); i++) {
diff.push_back(a[i] - b[i]);
}
return Stats::For(diff);
}
double standardDeviation() const { return sqrt(variance); }
friend std::ostream& operator<<(std::ostream& s, const Stats& a) {
return s << "Stats"
<< "{ mean:" << a.mean << ", stddev:" << a.standardDeviation()
<< ", min:" << a.min << ", max:" << a.max << " }";
}
struct Error {
double absmean = std::numeric_limits<double>::infinity();
double stddev = std::numeric_limits<double>::infinity();
double absmax = std::numeric_limits<double>::infinity();
constexpr auto Fields() const { return std::tie(absmean, stddev, absmax); }
template <class Fn>
friend constexpr bool cmp_all(const Error& a, const Error& b,
const Fn& fn) {
return cmp_tups_all(a.Fields(), b.Fields(), fn);
}
friend constexpr bool operator<(const Error& a, const Error& b) {
return cmp_all(a, b, [](const auto& a, const auto& b) { return a < b; });
}
friend constexpr bool operator<=(const Error& a, const Error& b) {
return cmp_all(a, b, [](const auto& a, const auto& b) { return a <= b; });
}
friend std::ostream& operator<<(std::ostream& s, const Error& a) {
return s << "Stats::Error"
<< "{ absmean:" << a.absmean << ", stddev:" << a.stddev
<< ", absmax:" << a.absmax << " }";
}
};
operator Error() const {
return {abs(mean), standardDeviation(), std::max(abs(min), abs(max))};
}
};
static_assert(Stats::Error{0, 0, 0} < Stats::Error{1, 1, 1});
static_assert(!(Stats::Error{0, 1, 0} < Stats::Error{1, 1, 1}));
static_assert(Stats::Error{0, 1, 0} <= Stats::Error{1, 1, 1});
static_assert(!(Stats::Error{0, 2, 0} <= Stats::Error{1, 1, 1}));
// -
static Stats StatsForLutError(const ColorspaceTransform& ct,
const ivec3 srcQuants, const ivec3 dstQuants) {
const auto lut = ct.ToLut3();
const auto dstScale = vec3(dstQuants - 1);
std::vector<double> quantErrors;
quantErrors.reserve(srcQuants.x() * srcQuants.y() * srcQuants.z());
ForEachSampleWithin(srcQuants, [&](const vec3& src) {
const auto sampled = lut.Sample(src);
const auto actual = ct.DstFromSrc(src);
const auto isampled = ivec3(round(sampled * dstScale));
const auto iactual = ivec3(round(actual * dstScale));
const auto ierr = abs(isampled - iactual);
const auto quantError = dot(ierr, ivec3{1});
quantErrors.push_back(quantError);
if (quantErrors.size() % 100000 == 0) {
printf("%zu of %zu\n", quantErrors.size(), quantErrors.capacity());
}
});
const auto quantErrStats = Stats::For(quantErrors);
return quantErrStats;
}
TEST(Colorspaces, LutError_Rec709Full_Rec709Rgb)
{
const auto src = ColorspaceDesc{
Chromaticities::Rec709(),
PiecewiseGammaDesc::Rec709(),
{{YuvLumaCoeffs::Rec709(), YcbcrDesc::Full8()}},
};
const auto dst = ColorspaceDesc{
Chromaticities::Rec709(),
PiecewiseGammaDesc::Rec709(),
{},
};
const auto ct = ColorspaceTransform::Create(src, dst);
const auto stats = StatsForLutError(ct, ivec3{64}, ivec3{256});
EXPECT_NEAR(stats.mean, 0.000, 0.001);
EXPECT_NEAR(stats.standardDeviation(), 0.008, 0.001);
EXPECT_NEAR(stats.min, 0, 0.001);
EXPECT_NEAR(stats.max, 1, 0.001);
}
TEST(Colorspaces, LutError_Rec709Full_Srgb)
{
const auto src = ColorspaceDesc{
Chromaticities::Rec709(),
PiecewiseGammaDesc::Rec709(),
{{YuvLumaCoeffs::Rec709(), YcbcrDesc::Full8()}},
};
const auto dst = ColorspaceDesc{
Chromaticities::Srgb(),
PiecewiseGammaDesc::Srgb(),
{},
};
const auto ct = ColorspaceTransform::Create(src, dst);
const auto stats = StatsForLutError(ct, ivec3{64}, ivec3{256});
EXPECT_NEAR(stats.mean, 0.530, 0.001);
EXPECT_NEAR(stats.standardDeviation(), 1.674, 0.001);
EXPECT_NEAR(stats.min, 0, 0.001);
EXPECT_NEAR(stats.max, 17, 0.001);
}
// -
template <typename T, typename TIter = decltype(std::begin(std::declval<T>())),
typename = decltype(std::end(std::declval<T>()))>
constexpr auto enumerate(T&& iterable) {
struct iterator {
size_t i;
TIter iter;
bool operator!=(const iterator& other) const { return iter != other.iter; }
void operator++() {
++i;
++iter;
}
auto operator*() const { return std::tie(i, *iter); }
};
struct iterable_wrapper {
T iterable;
auto begin() { return iterator{0, std::begin(iterable)}; }
auto end() { return iterator{0, std::end(iterable)}; }
};
return iterable_wrapper{std::forward<T>(iterable)};
}
inline auto MakeLinear(const float from, const float to, const int n) {
std::vector<float> ret;
ret.resize(n);
for (auto [i, val] : enumerate(ret)) {
const auto t = i / float(ret.size() - 1);
val = from + (to - from) * t;
}
return ret;
};
inline auto MakeGamma(const float exp, const int n) {
std::vector<float> ret;
ret.resize(n);
for (auto [i, val] : enumerate(ret)) {
const auto t = i / float(ret.size() - 1);
val = powf(t, exp);
}
return ret;
};
// -
TEST(Colorspaces, GuessGamma)
{
EXPECT_NEAR(GuessGamma(MakeGamma(1, 11)), 1.0, 0);
EXPECT_NEAR(GuessGamma(MakeGamma(2.2, 11)), 2.2, 4.8e-8);
EXPECT_NEAR(GuessGamma(MakeGamma(1 / 2.2, 11)), 1 / 2.2, 1.7e-7);
}
// -
template <class T, class U>
float StdDev(const T& test, const U& ref) {
float sum = 0;
for (size_t i = 0; i < test.size(); i++) {
const auto diff = test[i] - ref[i];
sum += diff * diff;
}
const auto variance = sum / test.size();
return sqrt(variance);
}
template <class T>
inline void AutoLinearFill(T& vals) {
LinearFill(vals, {
{0, 0},
{vals.size() - 1.0f, 1},
});
}
template <class T, class... More>
auto MakeArray(const T& a0, const More&... args) {
return std::array<T, 1 + sizeof...(More)>{a0, static_cast<float>(args)...};
}
TEST(Colorspaces, LinearFill)
{
EXPECT_NEAR(StdDev(MakeLinear(0, 1, 3), MakeArray<float>(0, 0.5, 1)), 0,
0.001);
auto vals = std::vector<float>(3);
LinearFill(vals, {
{0, 0},
{vals.size() - 1.0f, 1},
});
EXPECT_NEAR(StdDev(vals, MakeArray<float>(0, 0.5, 1)), 0, 0.001);
LinearFill(vals, {
{0, 1},
{vals.size() - 1.0f, 0},
});
EXPECT_NEAR(StdDev(vals, MakeArray<float>(1, 0.5, 0)), 0, 0.001);
}
TEST(Colorspaces, DequantizeMonotonic)
{
auto orig = std::vector<float>{0, 0, 0, 1, 1, 2};
auto vals = orig;
EXPECT_TRUE(IsMonotonic(vals));
EXPECT_TRUE(!IsMonotonic(vals, std::less<float>{}));
DequantizeMonotonic(vals);
EXPECT_TRUE(IsMonotonic(vals, std::less<float>{}));
EXPECT_LT(StdDev(vals, orig),
StdDev(MakeLinear(orig.front(), orig.back(), vals.size()), orig));
}
TEST(Colorspaces, InvertLut)
{
const auto linear = MakeLinear(0, 1, 256);
auto linearFromSrgb = linear;
for (auto& val : linearFromSrgb) {
val = powf(val, 2.2);
}
auto srgbFromLinearExpected = linear;
for (auto& val : srgbFromLinearExpected) {
val = powf(val, 1 / 2.2);
}
auto srgbFromLinearViaInvert = linearFromSrgb;
InvertLut(linearFromSrgb, &srgbFromLinearViaInvert);
// I just want to appreciate that InvertLut is a non-analytical approximation,
// and yet it's extraordinarily close to the analytical inverse.
EXPECT_LE(Stats::Diff(srgbFromLinearViaInvert, srgbFromLinearExpected),
(Stats::Error{3e-6, 3e-6, 3e-5}));
const auto srcSrgb = MakeLinear(0, 1, 256);
auto roundtripSrgb = srcSrgb;
for (auto& srgb : roundtripSrgb) {
const auto linear = SampleOutByIn(linearFromSrgb, srgb);
const auto srgb2 = SampleOutByIn(srgbFromLinearViaInvert, linear);
// printf("[%f] %f -> %f -> %f\n", srgb2-srgb, srgb, linear, srgb2);
srgb = srgb2;
}
EXPECT_LE(Stats::Diff(roundtripSrgb, srcSrgb),
(Stats::Error{0.0013, 0.0046, 0.023}));
}
TEST(Colorspaces, XyzFromLinearRgb)
{
const auto xyzd65FromLinearRgb = XyzFromLinearRgb(Chromaticities::Srgb());
const auto XYZD65_FROM_LINEAR_RGB = mat3({
vec3{{0.4124564, 0.3575761, 0.1804375}},
vec3{{0.2126729, 0.7151522, 0.0721750}},
vec3{{0.0193339, 0.1191920, 0.9503041}},
});
EXPECT_NEAR(sqrt(dotDifference(xyzd65FromLinearRgb, XYZD65_FROM_LINEAR_RGB)),
0, 0.001);
}
TEST(Colorspaces, ColorProfileConversionDesc_SrgbFromRec709)
{
const auto srgb = ColorProfileDesc::From({
Chromaticities::Srgb(),
PiecewiseGammaDesc::Srgb(),
});
const auto rec709 = ColorProfileDesc::From({
Chromaticities::Rec709(),
PiecewiseGammaDesc::Rec709(),
});
{
const auto conv = ColorProfileConversionDesc::From({
.src = srgb,
.dst = srgb,
});
auto src = vec3(16.0);
auto dst = conv.DstFromSrc(src / 255) * 255;
const auto tfa = PiecewiseGammaDesc::Srgb();
const auto tfb = PiecewiseGammaDesc::Srgb();
const auto expected =
TfFromLinear(tfb, LinearFromTf(tfa, src.x() / 255)) * 255;
printf("%f %f %f\n", src.x(), src.y(), src.z());
printf("%f %f %f\n", dst.x(), dst.y(), dst.z());
EXPECT_LT(Stats::Diff(dst.data, vec3(expected).data), (Stats::Error{0.42}));
}
{
const auto conv = ColorProfileConversionDesc::From({
.src = rec709,
.dst = rec709,
});
auto src = vec3(16.0);
auto dst = conv.DstFromSrc(src / 255) * 255;
const auto tfa = PiecewiseGammaDesc::Rec709();
const auto tfb = PiecewiseGammaDesc::Rec709();
const auto expected =
TfFromLinear(tfb, LinearFromTf(tfa, src.x() / 255)) * 255;
printf("%f %f %f\n", src.x(), src.y(), src.z());
printf("%f %f %f\n", dst.x(), dst.y(), dst.z());
EXPECT_LT(Stats::Diff(dst.data, vec3(expected).data), (Stats::Error{1e-6}));
}
{
const auto conv = ColorProfileConversionDesc::From({
.src = rec709,
.dst = srgb,
});
auto src = vec3(16.0);
auto dst = conv.DstFromSrc(src / 255) * 255;
const auto tfa = PiecewiseGammaDesc::Rec709();
const auto tfb = PiecewiseGammaDesc::Srgb();
const auto expected =
TfFromLinear(tfb, LinearFromTf(tfa, src.x() / 255)) * 255;
printf("expected: %f\n", expected);
printf("%f %f %f\n", src.x(), src.y(), src.z());
printf("%f %f %f\n", dst.x(), dst.y(), dst.z());
EXPECT_LT(Stats::Diff(dst.data, vec3(expected).data), (Stats::Error{0.12}));
}
}
TEST(Colorspaces, SampleOutByIn_NegativeInputs)
{
const auto tf = MakeGamma(1.0 / 2.2, 256);
EXPECT_LT(SampleOutByIn(tf, -0.1f), 0.0f);
}
TEST(Colorspaces, ColorProfileConversionDesc_Srgb_Displayp3)
{
const auto srgb = ColorProfileDesc::From({
Chromaticities::Srgb(),
PiecewiseGammaDesc::Srgb(),
});
const auto displayp3 = ColorProfileDesc::From({
Chromaticities::DisplayP3(),
PiecewiseGammaDesc::DisplayP3(),
});
const auto srgbToDisplayp3 = ColorProfileConversionDesc::From({
.src = srgb,
.dst = displayp3,
});
const auto displayp3ToSrgb = ColorProfileConversionDesc::From({
.src = displayp3,
.dst = srgb,
});
const auto VecNear = [](const vec3& was, const vec3& expected,
const vec3& max_err) {
const auto err = abs(was - expected);
const auto err_above_max_err = err - max_err;
bool ok = true;
for (const auto v : err_above_max_err.data) {
ok &= v <= 0.0;
}
return ok;
};
EXPECT_PRED3(VecNear, srgbToDisplayp3.DstFromSrc(vec3({1.0, 0.0, 0.0})),
vec3({0.9175, 0.2003, 0.1386}), vec3(0.0004));
EXPECT_PRED3(VecNear, srgbToDisplayp3.DstFromSrc(vec3({0.0, 1.0, 0.0})),
vec3({0.4584, 0.9853, 0.2983}), vec3(0.0001));
EXPECT_PRED3(VecNear, srgbToDisplayp3.DstFromSrc(vec3({0.0, 0.0, 1.0})),
vec3({0.0000, 0.0000, 0.9596}), vec3(0.0001));
EXPECT_PRED3(VecNear,
displayp3ToSrgb.DstFromSrc(vec3({0.9175, 0.2003, 0.1386})),
vec3({1.0, 0.0, 0.0}), vec3(0.0002));
EXPECT_PRED3(VecNear,
displayp3ToSrgb.DstFromSrc(vec3({0.4584, 0.9853, 0.2983})),
vec3({0.0, 1.0, 0.0}), vec3(0.0003));
EXPECT_PRED3(VecNear,
displayp3ToSrgb.DstFromSrc(vec3({0.0000, 0.0000, 0.9596})),
vec3({0.0, 0.0, 1.0}), vec3(0.0001));
}