Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: c; c-basic-offset: 4; tab-width: 8; indent-tabs-mode: t; -*- */
/*
* Copyright © 2000 SuSE, Inc.
* Copyright © 2007 Red Hat, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software and its
* documentation for any purpose is hereby granted without fee, provided that
* the above copyright notice appear in all copies and that both that
* copyright notice and this permission notice appear in supporting
* documentation, and that the name of SuSE not be used in advertising or
* publicity pertaining to distribution of the software without specific,
* written prior permission. SuSE makes no representations about the
* suitability of this software for any purpose. It is provided "as is"
* without express or implied warranty.
*
* SuSE DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL SuSE
* BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* Author: Keith Packard, SuSE, Inc.
*/
#ifndef PIXMAN_FAST_PATH_H__
#define PIXMAN_FAST_PATH_H__
#include "pixman-private.h"
#define PIXMAN_REPEAT_COVER -1
/* Flags describing input parameters to fast path macro template.
* Turning on some flag values may indicate that
* "some property X is available so template can use this" or
* "some property X should be handled by template".
*
* FLAG_HAVE_SOLID_MASK
* Input mask is solid so template should handle this.
*
* FLAG_HAVE_NON_SOLID_MASK
* Input mask is bits mask so template should handle this.
*
* FLAG_HAVE_SOLID_MASK and FLAG_HAVE_NON_SOLID_MASK are mutually
* exclusive. (It's not allowed to turn both flags on)
*/
#define FLAG_NONE (0)
#define FLAG_HAVE_SOLID_MASK (1 << 1)
#define FLAG_HAVE_NON_SOLID_MASK (1 << 2)
/* To avoid too short repeated scanline function calls, extend source
* scanlines having width less than below constant value.
*/
#define REPEAT_NORMAL_MIN_WIDTH 64
static force_inline pixman_bool_t
repeat (pixman_repeat_t repeat, int *c, int size)
{
if (repeat == PIXMAN_REPEAT_NONE)
{
if (*c < 0 || *c >= size)
return FALSE;
}
else if (repeat == PIXMAN_REPEAT_NORMAL)
{
while (*c >= size)
*c -= size;
while (*c < 0)
*c += size;
}
else if (repeat == PIXMAN_REPEAT_PAD)
{
*c = CLIP (*c, 0, size - 1);
}
else /* REFLECT */
{
*c = MOD (*c, size * 2);
if (*c >= size)
*c = size * 2 - *c - 1;
}
return TRUE;
}
static force_inline int
pixman_fixed_to_bilinear_weight (pixman_fixed_t x)
{
return (x >> (16 - BILINEAR_INTERPOLATION_BITS)) &
((1 << BILINEAR_INTERPOLATION_BITS) - 1);
}
#if BILINEAR_INTERPOLATION_BITS <= 4
/* Inspired by Filter_32_opaque from Skia */
static force_inline uint32_t
bilinear_interpolation (uint32_t tl, uint32_t tr,
uint32_t bl, uint32_t br,
int distx, int disty)
{
int distxy, distxiy, distixy, distixiy;
uint32_t lo, hi;
distx <<= (4 - BILINEAR_INTERPOLATION_BITS);
disty <<= (4 - BILINEAR_INTERPOLATION_BITS);
distxy = distx * disty;
distxiy = (distx << 4) - distxy; /* distx * (16 - disty) */
distixy = (disty << 4) - distxy; /* disty * (16 - distx) */
distixiy =
16 * 16 - (disty << 4) -
(distx << 4) + distxy; /* (16 - distx) * (16 - disty) */
lo = (tl & 0xff00ff) * distixiy;
hi = ((tl >> 8) & 0xff00ff) * distixiy;
lo += (tr & 0xff00ff) * distxiy;
hi += ((tr >> 8) & 0xff00ff) * distxiy;
lo += (bl & 0xff00ff) * distixy;
hi += ((bl >> 8) & 0xff00ff) * distixy;
lo += (br & 0xff00ff) * distxy;
hi += ((br >> 8) & 0xff00ff) * distxy;
return ((lo >> 8) & 0xff00ff) | (hi & ~0xff00ff);
}
#else
#if SIZEOF_LONG > 4
static force_inline uint32_t
bilinear_interpolation (uint32_t tl, uint32_t tr,
uint32_t bl, uint32_t br,
int distx, int disty)
{
uint64_t distxy, distxiy, distixy, distixiy;
uint64_t tl64, tr64, bl64, br64;
uint64_t f, r;
distx <<= (8 - BILINEAR_INTERPOLATION_BITS);
disty <<= (8 - BILINEAR_INTERPOLATION_BITS);
distxy = distx * disty;
distxiy = distx * (256 - disty);
distixy = (256 - distx) * disty;
distixiy = (256 - distx) * (256 - disty);
/* Alpha and Blue */
tl64 = tl & 0xff0000ff;
tr64 = tr & 0xff0000ff;
bl64 = bl & 0xff0000ff;
br64 = br & 0xff0000ff;
f = tl64 * distixiy + tr64 * distxiy + bl64 * distixy + br64 * distxy;
r = f & 0x0000ff0000ff0000ull;
/* Red and Green */
tl64 = tl;
tl64 = ((tl64 << 16) & 0x000000ff00000000ull) | (tl64 & 0x0000ff00ull);
tr64 = tr;
tr64 = ((tr64 << 16) & 0x000000ff00000000ull) | (tr64 & 0x0000ff00ull);
bl64 = bl;
bl64 = ((bl64 << 16) & 0x000000ff00000000ull) | (bl64 & 0x0000ff00ull);
br64 = br;
br64 = ((br64 << 16) & 0x000000ff00000000ull) | (br64 & 0x0000ff00ull);
f = tl64 * distixiy + tr64 * distxiy + bl64 * distixy + br64 * distxy;
r |= ((f >> 16) & 0x000000ff00000000ull) | (f & 0xff000000ull);
return (uint32_t)(r >> 16);
}
#else
static force_inline uint32_t
bilinear_interpolation (uint32_t tl, uint32_t tr,
uint32_t bl, uint32_t br,
int distx, int disty)
{
int distxy, distxiy, distixy, distixiy;
uint32_t f, r;
distx <<= (8 - BILINEAR_INTERPOLATION_BITS);
disty <<= (8 - BILINEAR_INTERPOLATION_BITS);
distxy = distx * disty;
distxiy = (distx << 8) - distxy; /* distx * (256 - disty) */
distixy = (disty << 8) - distxy; /* disty * (256 - distx) */
distixiy =
256 * 256 - (disty << 8) -
(distx << 8) + distxy; /* (256 - distx) * (256 - disty) */
/* Blue */
r = (tl & 0x000000ff) * distixiy + (tr & 0x000000ff) * distxiy
+ (bl & 0x000000ff) * distixy + (br & 0x000000ff) * distxy;
/* Green */
f = (tl & 0x0000ff00) * distixiy + (tr & 0x0000ff00) * distxiy
+ (bl & 0x0000ff00) * distixy + (br & 0x0000ff00) * distxy;
r |= f & 0xff000000;
tl >>= 16;
tr >>= 16;
bl >>= 16;
br >>= 16;
r >>= 16;
/* Red */
f = (tl & 0x000000ff) * distixiy + (tr & 0x000000ff) * distxiy
+ (bl & 0x000000ff) * distixy + (br & 0x000000ff) * distxy;
r |= f & 0x00ff0000;
/* Alpha */
f = (tl & 0x0000ff00) * distixiy + (tr & 0x0000ff00) * distxiy
+ (bl & 0x0000ff00) * distixy + (br & 0x0000ff00) * distxy;
r |= f & 0xff000000;
return r;
}
#endif
#endif // BILINEAR_INTERPOLATION_BITS <= 4
static force_inline argb_t
bilinear_interpolation_float (argb_t tl, argb_t tr,
argb_t bl, argb_t br,
float distx, float disty)
{
float distxy, distxiy, distixy, distixiy;
argb_t r;
distxy = distx * disty;
distxiy = distx * (1.f - disty);
distixy = (1.f - distx) * disty;
distixiy = (1.f - distx) * (1.f - disty);
r.a = tl.a * distixiy + tr.a * distxiy +
bl.a * distixy + br.a * distxy;
r.r = tl.r * distixiy + tr.r * distxiy +
bl.r * distixy + br.r * distxy;
r.g = tl.g * distixiy + tr.g * distxiy +
bl.g * distixy + br.g * distxy;
r.b = tl.b * distixiy + tr.b * distxiy +
bl.b * distixy + br.b * distxy;
return r;
}
/*
* For each scanline fetched from source image with PAD repeat:
* - calculate how many pixels need to be padded on the left side
* - calculate how many pixels need to be padded on the right side
* - update width to only count pixels which are fetched from the image
* All this information is returned via 'width', 'left_pad', 'right_pad'
* arguments. The code is assuming that 'unit_x' is positive.
*
* Note: 64-bit math is used in order to avoid potential overflows, which
* is probably excessive in many cases. This particular function
* may need its own correctness test and performance tuning.
*/
static force_inline void
pad_repeat_get_scanline_bounds (int32_t source_image_width,
pixman_fixed_t vx,
pixman_fixed_t unit_x,
int32_t * width,
int32_t * left_pad,
int32_t * right_pad)
{
int64_t max_vx = (int64_t) source_image_width << 16;
int64_t tmp;
if (vx < 0)
{
tmp = ((int64_t) unit_x - 1 - vx) / unit_x;
if (tmp > *width)
{
*left_pad = *width;
*width = 0;
}
else
{
*left_pad = (int32_t) tmp;
*width -= (int32_t) tmp;
}
}
else
{
*left_pad = 0;
}
tmp = ((int64_t) unit_x - 1 - vx + max_vx) / unit_x - *left_pad;
if (tmp < 0)
{
*right_pad = *width;
*width = 0;
}
else if (tmp >= *width)
{
*right_pad = 0;
}
else
{
*right_pad = *width - (int32_t) tmp;
*width = (int32_t) tmp;
}
}
/* A macroified version of specialized nearest scalers for some
* common 8888 and 565 formats. It supports SRC and OVER ops.
*
* There are two repeat versions, one that handles repeat normal,
* and one without repeat handling that only works if the src region
* used is completely covered by the pre-repeated source samples.
*
* The loops are unrolled to process two pixels per iteration for better
* performance on most CPU architectures (superscalar processors
* can issue several operations simultaneously, other processors can hide
* instructions latencies by pipelining operations). Unrolling more
* does not make much sense because the compiler will start running out
* of spare registers soon.
*/
#define GET_8888_ALPHA(s) ((s) >> 24)
/* This is not actually used since we don't have an OVER with
565 source, but it is needed to build. */
#define GET_0565_ALPHA(s) 0xff
#define GET_x888_ALPHA(s) 0xff
#define FAST_NEAREST_SCANLINE(scanline_func_name, SRC_FORMAT, DST_FORMAT, \
src_type_t, dst_type_t, OP, repeat_mode) \
static force_inline void \
scanline_func_name (dst_type_t *dst, \
const src_type_t *src, \
int32_t w, \
pixman_fixed_t vx, \
pixman_fixed_t unit_x, \
pixman_fixed_t src_width_fixed, \
pixman_bool_t fully_transparent_src) \
{ \
uint32_t d; \
src_type_t s1, s2; \
uint8_t a1, a2; \
int x1, x2; \
\
if (PIXMAN_OP_ ## OP == PIXMAN_OP_OVER && fully_transparent_src) \
return; \
\
if (PIXMAN_OP_ ## OP != PIXMAN_OP_SRC && PIXMAN_OP_ ## OP != PIXMAN_OP_OVER) \
abort(); \
\
while ((w -= 2) >= 0) \
{ \
x1 = pixman_fixed_to_int (vx); \
vx += unit_x; \
if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NORMAL) \
{ \
/* This works because we know that unit_x is positive */ \
while (vx >= 0) \
vx -= src_width_fixed; \
} \
s1 = *(src + x1); \
\
x2 = pixman_fixed_to_int (vx); \
vx += unit_x; \
if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NORMAL) \
{ \
/* This works because we know that unit_x is positive */ \
while (vx >= 0) \
vx -= src_width_fixed; \
} \
s2 = *(src + x2); \
\
if (PIXMAN_OP_ ## OP == PIXMAN_OP_OVER) \
{ \
a1 = GET_ ## SRC_FORMAT ## _ALPHA(s1); \
a2 = GET_ ## SRC_FORMAT ## _ALPHA(s2); \
\
if (a1 == 0xff) \
{ \
*dst = convert_ ## SRC_FORMAT ## _to_ ## DST_FORMAT (s1); \
} \
else if (s1) \
{ \
d = convert_ ## DST_FORMAT ## _to_8888 (*dst); \
s1 = convert_ ## SRC_FORMAT ## _to_8888 (s1); \
a1 ^= 0xff; \
UN8x4_MUL_UN8_ADD_UN8x4 (d, a1, s1); \
*dst = convert_8888_to_ ## DST_FORMAT (d); \
} \
dst++; \
\
if (a2 == 0xff) \
{ \
*dst = convert_ ## SRC_FORMAT ## _to_ ## DST_FORMAT (s2); \
} \
else if (s2) \
{ \
d = convert_## DST_FORMAT ## _to_8888 (*dst); \
s2 = convert_## SRC_FORMAT ## _to_8888 (s2); \
a2 ^= 0xff; \
UN8x4_MUL_UN8_ADD_UN8x4 (d, a2, s2); \
*dst = convert_8888_to_ ## DST_FORMAT (d); \
} \
dst++; \
} \
else /* PIXMAN_OP_SRC */ \
{ \
*dst++ = convert_ ## SRC_FORMAT ## _to_ ## DST_FORMAT (s1); \
*dst++ = convert_ ## SRC_FORMAT ## _to_ ## DST_FORMAT (s2); \
} \
} \
\
if (w & 1) \
{ \
x1 = pixman_fixed_to_int (vx); \
s1 = *(src + x1); \
\
if (PIXMAN_OP_ ## OP == PIXMAN_OP_OVER) \
{ \
a1 = GET_ ## SRC_FORMAT ## _ALPHA(s1); \
\
if (a1 == 0xff) \
{ \
*dst = convert_ ## SRC_FORMAT ## _to_ ## DST_FORMAT (s1); \
} \
else if (s1) \
{ \
d = convert_## DST_FORMAT ## _to_8888 (*dst); \
s1 = convert_ ## SRC_FORMAT ## _to_8888 (s1); \
a1 ^= 0xff; \
UN8x4_MUL_UN8_ADD_UN8x4 (d, a1, s1); \
*dst = convert_8888_to_ ## DST_FORMAT (d); \
} \
dst++; \
} \
else /* PIXMAN_OP_SRC */ \
{ \
*dst++ = convert_ ## SRC_FORMAT ## _to_ ## DST_FORMAT (s1); \
} \
} \
}
#define FAST_NEAREST_MAINLOOP_INT(scale_func_name, scanline_func, src_type_t, mask_type_t, \
dst_type_t, repeat_mode, have_mask, mask_is_solid) \
static void \
fast_composite_scaled_nearest ## scale_func_name (pixman_implementation_t *imp, \
pixman_composite_info_t *info) \
{ \
PIXMAN_COMPOSITE_ARGS (info); \
dst_type_t *dst_line; \
mask_type_t *mask_line; \
src_type_t *src_first_line; \
int y; \
pixman_fixed_t src_width_fixed = pixman_int_to_fixed (src_image->bits.width); \
pixman_fixed_t max_vy; \
pixman_vector_t v; \
pixman_fixed_t vx, vy; \
pixman_fixed_t unit_x, unit_y; \
int32_t left_pad, right_pad; \
\
src_type_t *src; \
dst_type_t *dst; \
mask_type_t solid_mask; \
const mask_type_t *mask = &solid_mask; \
int src_stride, mask_stride, dst_stride; \
\
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, dst_type_t, dst_stride, dst_line, 1); \
if (have_mask) \
{ \
if (mask_is_solid) \
solid_mask = _pixman_image_get_solid (imp, mask_image, dest_image->bits.format); \
else \
PIXMAN_IMAGE_GET_LINE (mask_image, mask_x, mask_y, mask_type_t, \
mask_stride, mask_line, 1); \
} \
/* pass in 0 instead of src_x and src_y because src_x and src_y need to be \
* transformed from destination space to source space */ \
PIXMAN_IMAGE_GET_LINE (src_image, 0, 0, src_type_t, src_stride, src_first_line, 1); \
\
/* reference point is the center of the pixel */ \
v.vector[0] = pixman_int_to_fixed (src_x) + pixman_fixed_1 / 2; \
v.vector[1] = pixman_int_to_fixed (src_y) + pixman_fixed_1 / 2; \
v.vector[2] = pixman_fixed_1; \
\
if (!pixman_transform_point_3d (src_image->common.transform, &v)) \
return; \
\
unit_x = src_image->common.transform->matrix[0][0]; \
unit_y = src_image->common.transform->matrix[1][1]; \
\
/* Round down to closest integer, ensuring that 0.5 rounds to 0, not 1 */ \
v.vector[0] -= pixman_fixed_e; \
v.vector[1] -= pixman_fixed_e; \
\
vx = v.vector[0]; \
vy = v.vector[1]; \
\
if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NORMAL) \
{ \
max_vy = pixman_int_to_fixed (src_image->bits.height); \
\
/* Clamp repeating positions inside the actual samples */ \
repeat (PIXMAN_REPEAT_NORMAL, &vx, src_width_fixed); \
repeat (PIXMAN_REPEAT_NORMAL, &vy, max_vy); \
} \
\
if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_PAD || \
PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NONE) \
{ \
pad_repeat_get_scanline_bounds (src_image->bits.width, vx, unit_x, \
&width, &left_pad, &right_pad); \
vx += left_pad * unit_x; \
} \
\
while (--height >= 0) \
{ \
dst = dst_line; \
dst_line += dst_stride; \
if (have_mask && !mask_is_solid) \
{ \
mask = mask_line; \
mask_line += mask_stride; \
} \
\
y = pixman_fixed_to_int (vy); \
vy += unit_y; \
if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NORMAL) \
repeat (PIXMAN_REPEAT_NORMAL, &vy, max_vy); \
if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_PAD) \
{ \
repeat (PIXMAN_REPEAT_PAD, &y, src_image->bits.height); \
src = src_first_line + src_stride * y; \
if (left_pad > 0) \
{ \
scanline_func (mask, dst, \
src + src_image->bits.width - src_image->bits.width + 1, \
left_pad, -pixman_fixed_e, 0, src_width_fixed, FALSE); \
} \
if (width > 0) \
{ \
scanline_func (mask + (mask_is_solid ? 0 : left_pad), \
dst + left_pad, src + src_image->bits.width, width, \
vx - src_width_fixed, unit_x, src_width_fixed, FALSE); \
} \
if (right_pad > 0) \
{ \
scanline_func (mask + (mask_is_solid ? 0 : left_pad + width), \
dst + left_pad + width, src + src_image->bits.width, \
right_pad, -pixman_fixed_e, 0, src_width_fixed, FALSE); \
} \
} \
else if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NONE) \
{ \
static const src_type_t zero[1] = { 0 }; \
if (y < 0 || y >= src_image->bits.height) \
{ \
scanline_func (mask, dst, zero + 1, left_pad + width + right_pad, \
-pixman_fixed_e, 0, src_width_fixed, TRUE); \
continue; \
} \
src = src_first_line + src_stride * y; \
if (left_pad > 0) \
{ \
scanline_func (mask, dst, zero + 1, left_pad, \
-pixman_fixed_e, 0, src_width_fixed, TRUE); \
} \
if (width > 0) \
{ \
scanline_func (mask + (mask_is_solid ? 0 : left_pad), \
dst + left_pad, src + src_image->bits.width, width, \
vx - src_width_fixed, unit_x, src_width_fixed, FALSE); \
} \
if (right_pad > 0) \
{ \
scanline_func (mask + (mask_is_solid ? 0 : left_pad + width), \
dst + left_pad + width, zero + 1, right_pad, \
-pixman_fixed_e, 0, src_width_fixed, TRUE); \
} \
} \
else \
{ \
src = src_first_line + src_stride * y; \
scanline_func (mask, dst, src + src_image->bits.width, width, vx - src_width_fixed, \
unit_x, src_width_fixed, FALSE); \
} \
} \
}
/* A workaround for old sun studio, see: https://bugs.freedesktop.org/show_bug.cgi?id=32764 */
#define FAST_NEAREST_MAINLOOP_COMMON(scale_func_name, scanline_func, src_type_t, mask_type_t, \
dst_type_t, repeat_mode, have_mask, mask_is_solid) \
FAST_NEAREST_MAINLOOP_INT(_ ## scale_func_name, scanline_func, src_type_t, mask_type_t, \
dst_type_t, repeat_mode, have_mask, mask_is_solid)
#define FAST_NEAREST_MAINLOOP_NOMASK(scale_func_name, scanline_func, src_type_t, dst_type_t, \
repeat_mode) \
static force_inline void \
scanline_func##scale_func_name##_wrapper ( \
const uint8_t *mask, \
dst_type_t *dst, \
const src_type_t *src, \
int32_t w, \
pixman_fixed_t vx, \
pixman_fixed_t unit_x, \
pixman_fixed_t max_vx, \
pixman_bool_t fully_transparent_src) \
{ \
scanline_func (dst, src, w, vx, unit_x, max_vx, fully_transparent_src); \
} \
FAST_NEAREST_MAINLOOP_INT (scale_func_name, scanline_func##scale_func_name##_wrapper, \
src_type_t, uint8_t, dst_type_t, repeat_mode, FALSE, FALSE)
#define FAST_NEAREST_MAINLOOP(scale_func_name, scanline_func, src_type_t, dst_type_t, \
repeat_mode) \
FAST_NEAREST_MAINLOOP_NOMASK(_ ## scale_func_name, scanline_func, src_type_t, \
dst_type_t, repeat_mode)
#define FAST_NEAREST(scale_func_name, SRC_FORMAT, DST_FORMAT, \
src_type_t, dst_type_t, OP, repeat_mode) \
FAST_NEAREST_SCANLINE(scaled_nearest_scanline_ ## scale_func_name ## _ ## OP, \
SRC_FORMAT, DST_FORMAT, src_type_t, dst_type_t, \
OP, repeat_mode) \
FAST_NEAREST_MAINLOOP_NOMASK(_ ## scale_func_name ## _ ## OP, \
scaled_nearest_scanline_ ## scale_func_name ## _ ## OP, \
src_type_t, dst_type_t, repeat_mode)
#define SCALED_NEAREST_FLAGS \
(FAST_PATH_SCALE_TRANSFORM | \
FAST_PATH_NO_ALPHA_MAP | \
FAST_PATH_NEAREST_FILTER | \
FAST_PATH_NO_ACCESSORS | \
FAST_PATH_NARROW_FORMAT)
#define SIMPLE_NEAREST_FAST_PATH_NORMAL(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_NEAREST_FLAGS | \
FAST_PATH_NORMAL_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_null, 0, \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_nearest_ ## func ## _normal ## _ ## op, \
}
#define SIMPLE_NEAREST_FAST_PATH_PAD(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_NEAREST_FLAGS | \
FAST_PATH_PAD_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_null, 0, \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_nearest_ ## func ## _pad ## _ ## op, \
}
#define SIMPLE_NEAREST_FAST_PATH_NONE(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_NEAREST_FLAGS | \
FAST_PATH_NONE_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_null, 0, \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_nearest_ ## func ## _none ## _ ## op, \
}
#define SIMPLE_NEAREST_FAST_PATH_COVER(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
SCALED_NEAREST_FLAGS | FAST_PATH_SAMPLES_COVER_CLIP_NEAREST, \
PIXMAN_null, 0, \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_nearest_ ## func ## _cover ## _ ## op, \
}
#define SIMPLE_NEAREST_A8_MASK_FAST_PATH_NORMAL(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_NEAREST_FLAGS | \
FAST_PATH_NORMAL_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_a8, MASK_FLAGS (a8, FAST_PATH_UNIFIED_ALPHA), \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_nearest_ ## func ## _normal ## _ ## op, \
}
#define SIMPLE_NEAREST_A8_MASK_FAST_PATH_PAD(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_NEAREST_FLAGS | \
FAST_PATH_PAD_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_a8, MASK_FLAGS (a8, FAST_PATH_UNIFIED_ALPHA), \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_nearest_ ## func ## _pad ## _ ## op, \
}
#define SIMPLE_NEAREST_A8_MASK_FAST_PATH_NONE(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_NEAREST_FLAGS | \
FAST_PATH_NONE_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_a8, MASK_FLAGS (a8, FAST_PATH_UNIFIED_ALPHA), \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_nearest_ ## func ## _none ## _ ## op, \
}
#define SIMPLE_NEAREST_A8_MASK_FAST_PATH_COVER(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
SCALED_NEAREST_FLAGS | FAST_PATH_SAMPLES_COVER_CLIP_NEAREST, \
PIXMAN_a8, MASK_FLAGS (a8, FAST_PATH_UNIFIED_ALPHA), \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_nearest_ ## func ## _cover ## _ ## op, \
}
#define SIMPLE_NEAREST_SOLID_MASK_FAST_PATH_NORMAL(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_NEAREST_FLAGS | \
FAST_PATH_NORMAL_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_solid, MASK_FLAGS (solid, FAST_PATH_UNIFIED_ALPHA), \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_nearest_ ## func ## _normal ## _ ## op, \
}
#define SIMPLE_NEAREST_SOLID_MASK_FAST_PATH_PAD(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_NEAREST_FLAGS | \
FAST_PATH_PAD_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_solid, MASK_FLAGS (solid, FAST_PATH_UNIFIED_ALPHA), \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_nearest_ ## func ## _pad ## _ ## op, \
}
#define SIMPLE_NEAREST_SOLID_MASK_FAST_PATH_NONE(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_NEAREST_FLAGS | \
FAST_PATH_NONE_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_solid, MASK_FLAGS (solid, FAST_PATH_UNIFIED_ALPHA), \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_nearest_ ## func ## _none ## _ ## op, \
}
#define SIMPLE_NEAREST_SOLID_MASK_FAST_PATH_COVER(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
SCALED_NEAREST_FLAGS | FAST_PATH_SAMPLES_COVER_CLIP_NEAREST, \
PIXMAN_solid, MASK_FLAGS (solid, FAST_PATH_UNIFIED_ALPHA), \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_nearest_ ## func ## _cover ## _ ## op, \
}
/* Prefer the use of 'cover' variant, because it is faster */
#define SIMPLE_NEAREST_FAST_PATH(op,s,d,func) \
SIMPLE_NEAREST_FAST_PATH_COVER (op,s,d,func), \
SIMPLE_NEAREST_FAST_PATH_NONE (op,s,d,func), \
SIMPLE_NEAREST_FAST_PATH_PAD (op,s,d,func), \
SIMPLE_NEAREST_FAST_PATH_NORMAL (op,s,d,func)
#define SIMPLE_NEAREST_A8_MASK_FAST_PATH(op,s,d,func) \
SIMPLE_NEAREST_A8_MASK_FAST_PATH_COVER (op,s,d,func), \
SIMPLE_NEAREST_A8_MASK_FAST_PATH_NONE (op,s,d,func), \
SIMPLE_NEAREST_A8_MASK_FAST_PATH_PAD (op,s,d,func)
#define SIMPLE_NEAREST_SOLID_MASK_FAST_PATH(op,s,d,func) \
SIMPLE_NEAREST_SOLID_MASK_FAST_PATH_COVER (op,s,d,func), \
SIMPLE_NEAREST_SOLID_MASK_FAST_PATH_NONE (op,s,d,func), \
SIMPLE_NEAREST_SOLID_MASK_FAST_PATH_PAD (op,s,d,func), \
SIMPLE_NEAREST_SOLID_MASK_FAST_PATH_NORMAL (op,s,d,func)
/*****************************************************************************/
/*
* Identify 5 zones in each scanline for bilinear scaling. Depending on
* whether 2 pixels to be interpolated are fetched from the image itself,
* from the padding area around it or from both image and padding area.
*/
static force_inline void
bilinear_pad_repeat_get_scanline_bounds (int32_t source_image_width,
pixman_fixed_t vx,
pixman_fixed_t unit_x,
int32_t * left_pad,
int32_t * left_tz,
int32_t * width,
int32_t * right_tz,
int32_t * right_pad)
{
int width1 = *width, left_pad1, right_pad1;
int width2 = *width, left_pad2, right_pad2;
pad_repeat_get_scanline_bounds (source_image_width, vx, unit_x,
&width1, &left_pad1, &right_pad1);
pad_repeat_get_scanline_bounds (source_image_width, vx + pixman_fixed_1,
unit_x, &width2, &left_pad2, &right_pad2);
*left_pad = left_pad2;
*left_tz = left_pad1 - left_pad2;
*right_tz = right_pad2 - right_pad1;
*right_pad = right_pad1;
*width -= *left_pad + *left_tz + *right_tz + *right_pad;
}
/*
* Main loop template for single pass bilinear scaling. It needs to be
* provided with 'scanline_func' which should do the compositing operation.
* The needed function has the following prototype:
*
* scanline_func (dst_type_t * dst,
* const mask_type_ * mask,
* const src_type_t * src_top,
* const src_type_t * src_bottom,
* int32_t width,
* int weight_top,
* int weight_bottom,
* pixman_fixed_t vx,
* pixman_fixed_t unit_x,
* pixman_fixed_t max_vx,
* pixman_bool_t zero_src)
*
* Where:
* dst - destination scanline buffer for storing results
* mask - mask buffer (or single value for solid mask)
* src_top, src_bottom - two source scanlines
* width - number of pixels to process
* weight_top - weight of the top row for interpolation
* weight_bottom - weight of the bottom row for interpolation
* vx - initial position for fetching the first pair of
* pixels from the source buffer
* unit_x - position increment needed to move to the next pair
* of pixels
* max_vx - image size as a fixed point value, can be used for
* implementing NORMAL repeat (when it is supported)
* zero_src - boolean hint variable, which is set to TRUE when
* all source pixels are fetched from zero padding
* zone for NONE repeat
*
* Note: normally the sum of 'weight_top' and 'weight_bottom' is equal to
* BILINEAR_INTERPOLATION_RANGE, but sometimes it may be less than that
* for NONE repeat when handling fuzzy antialiased top or bottom image
* edges. Also both top and bottom weight variables are guaranteed to
* have value, which is less than BILINEAR_INTERPOLATION_RANGE.
* For example, the weights can fit into unsigned byte or be used
* with 8-bit SIMD multiplication instructions for 8-bit interpolation
* precision.
*/
#define FAST_BILINEAR_MAINLOOP_INT(scale_func_name, scanline_func, src_type_t, mask_type_t, \
dst_type_t, repeat_mode, flags) \
static void \
fast_composite_scaled_bilinear ## scale_func_name (pixman_implementation_t *imp, \
pixman_composite_info_t *info) \
{ \
PIXMAN_COMPOSITE_ARGS (info); \
dst_type_t *dst_line; \
mask_type_t *mask_line; \
src_type_t *src_first_line; \
int y1, y2; \
pixman_fixed_t max_vx = INT32_MAX; /* suppress uninitialized variable warning */ \
pixman_vector_t v; \
pixman_fixed_t vx, vy; \
pixman_fixed_t unit_x, unit_y; \
int32_t left_pad, left_tz, right_tz, right_pad; \
\
dst_type_t *dst; \
mask_type_t solid_mask; \
const mask_type_t *mask = &solid_mask; \
int src_stride, mask_stride, dst_stride; \
\
int src_width; \
pixman_fixed_t src_width_fixed; \
int max_x; \
pixman_bool_t need_src_extension; \
\
PIXMAN_IMAGE_GET_LINE (dest_image, dest_x, dest_y, dst_type_t, dst_stride, dst_line, 1); \
if (flags & FLAG_HAVE_SOLID_MASK) \
{ \
solid_mask = _pixman_image_get_solid (imp, mask_image, dest_image->bits.format); \
mask_stride = 0; \
} \
else if (flags & FLAG_HAVE_NON_SOLID_MASK) \
{ \
PIXMAN_IMAGE_GET_LINE (mask_image, mask_x, mask_y, mask_type_t, \
mask_stride, mask_line, 1); \
} \
\
/* pass in 0 instead of src_x and src_y because src_x and src_y need to be \
* transformed from destination space to source space */ \
PIXMAN_IMAGE_GET_LINE (src_image, 0, 0, src_type_t, src_stride, src_first_line, 1); \
\
/* reference point is the center of the pixel */ \
v.vector[0] = pixman_int_to_fixed (src_x) + pixman_fixed_1 / 2; \
v.vector[1] = pixman_int_to_fixed (src_y) + pixman_fixed_1 / 2; \
v.vector[2] = pixman_fixed_1; \
\
if (!pixman_transform_point_3d (src_image->common.transform, &v)) \
return; \
\
unit_x = src_image->common.transform->matrix[0][0]; \
unit_y = src_image->common.transform->matrix[1][1]; \
\
v.vector[0] -= pixman_fixed_1 / 2; \
v.vector[1] -= pixman_fixed_1 / 2; \
\
vy = v.vector[1]; \
\
if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_PAD || \
PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NONE) \
{ \
bilinear_pad_repeat_get_scanline_bounds (src_image->bits.width, v.vector[0], unit_x, \
&left_pad, &left_tz, &width, &right_tz, &right_pad); \
if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_PAD) \
{ \
/* PAD repeat does not need special handling for 'transition zones' and */ \
/* they can be combined with 'padding zones' safely */ \
left_pad += left_tz; \
right_pad += right_tz; \
left_tz = right_tz = 0; \
} \
v.vector[0] += left_pad * unit_x; \
} \
\
if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NORMAL) \
{ \
vx = v.vector[0]; \
repeat (PIXMAN_REPEAT_NORMAL, &vx, pixman_int_to_fixed(src_image->bits.width)); \
max_x = pixman_fixed_to_int (vx + (width - 1) * (int64_t)unit_x) + 1; \
\
if (src_image->bits.width < REPEAT_NORMAL_MIN_WIDTH) \
{ \
src_width = 0; \
\
while (src_width < REPEAT_NORMAL_MIN_WIDTH && src_width <= max_x) \
src_width += src_image->bits.width; \
\
need_src_extension = TRUE; \
} \
else \
{ \
src_width = src_image->bits.width; \
need_src_extension = FALSE; \
} \
\
src_width_fixed = pixman_int_to_fixed (src_width); \
} \
\
while (--height >= 0) \
{ \
int weight1, weight2; \
dst = dst_line; \
dst_line += dst_stride; \
vx = v.vector[0]; \
if (flags & FLAG_HAVE_NON_SOLID_MASK) \
{ \
mask = mask_line; \
mask_line += mask_stride; \
} \
\
y1 = pixman_fixed_to_int (vy); \
weight2 = pixman_fixed_to_bilinear_weight (vy); \
if (weight2) \
{ \
/* both weight1 and weight2 are smaller than BILINEAR_INTERPOLATION_RANGE */ \
y2 = y1 + 1; \
weight1 = BILINEAR_INTERPOLATION_RANGE - weight2; \
} \
else \
{ \
/* set both top and bottom row to the same scanline and tweak weights */ \
y2 = y1; \
weight1 = weight2 = BILINEAR_INTERPOLATION_RANGE / 2; \
} \
vy += unit_y; \
if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_PAD) \
{ \
src_type_t *src1, *src2; \
src_type_t buf1[2]; \
src_type_t buf2[2]; \
repeat (PIXMAN_REPEAT_PAD, &y1, src_image->bits.height); \
repeat (PIXMAN_REPEAT_PAD, &y2, src_image->bits.height); \
src1 = src_first_line + src_stride * y1; \
src2 = src_first_line + src_stride * y2; \
\
if (left_pad > 0) \
{ \
buf1[0] = buf1[1] = src1[0]; \
buf2[0] = buf2[1] = src2[0]; \
scanline_func (dst, mask, \
buf1, buf2, left_pad, weight1, weight2, 0, 0, 0, FALSE); \
dst += left_pad; \
if (flags & FLAG_HAVE_NON_SOLID_MASK) \
mask += left_pad; \
} \
if (width > 0) \
{ \
scanline_func (dst, mask, \
src1, src2, width, weight1, weight2, vx, unit_x, 0, FALSE); \
dst += width; \
if (flags & FLAG_HAVE_NON_SOLID_MASK) \
mask += width; \
} \
if (right_pad > 0) \
{ \
buf1[0] = buf1[1] = src1[src_image->bits.width - 1]; \
buf2[0] = buf2[1] = src2[src_image->bits.width - 1]; \
scanline_func (dst, mask, \
buf1, buf2, right_pad, weight1, weight2, 0, 0, 0, FALSE); \
} \
} \
else if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NONE) \
{ \
src_type_t *src1, *src2; \
src_type_t buf1[2]; \
src_type_t buf2[2]; \
/* handle top/bottom zero padding by just setting weights to 0 if needed */ \
if (y1 < 0) \
{ \
weight1 = 0; \
y1 = 0; \
} \
if (y1 >= src_image->bits.height) \
{ \
weight1 = 0; \
y1 = src_image->bits.height - 1; \
} \
if (y2 < 0) \
{ \
weight2 = 0; \
y2 = 0; \
} \
if (y2 >= src_image->bits.height) \
{ \
weight2 = 0; \
y2 = src_image->bits.height - 1; \
} \
src1 = src_first_line + src_stride * y1; \
src2 = src_first_line + src_stride * y2; \
\
if (left_pad > 0) \
{ \
buf1[0] = buf1[1] = 0; \
buf2[0] = buf2[1] = 0; \
scanline_func (dst, mask, \
buf1, buf2, left_pad, weight1, weight2, 0, 0, 0, TRUE); \
dst += left_pad; \
if (flags & FLAG_HAVE_NON_SOLID_MASK) \
mask += left_pad; \
} \
if (left_tz > 0) \
{ \
buf1[0] = 0; \
buf1[1] = src1[0]; \
buf2[0] = 0; \
buf2[1] = src2[0]; \
scanline_func (dst, mask, \
buf1, buf2, left_tz, weight1, weight2, \
pixman_fixed_frac (vx), unit_x, 0, FALSE); \
dst += left_tz; \
if (flags & FLAG_HAVE_NON_SOLID_MASK) \
mask += left_tz; \
vx += left_tz * unit_x; \
} \
if (width > 0) \
{ \
scanline_func (dst, mask, \
src1, src2, width, weight1, weight2, vx, unit_x, 0, FALSE); \
dst += width; \
if (flags & FLAG_HAVE_NON_SOLID_MASK) \
mask += width; \
vx += width * unit_x; \
} \
if (right_tz > 0) \
{ \
buf1[0] = src1[src_image->bits.width - 1]; \
buf1[1] = 0; \
buf2[0] = src2[src_image->bits.width - 1]; \
buf2[1] = 0; \
scanline_func (dst, mask, \
buf1, buf2, right_tz, weight1, weight2, \
pixman_fixed_frac (vx), unit_x, 0, FALSE); \
dst += right_tz; \
if (flags & FLAG_HAVE_NON_SOLID_MASK) \
mask += right_tz; \
} \
if (right_pad > 0) \
{ \
buf1[0] = buf1[1] = 0; \
buf2[0] = buf2[1] = 0; \
scanline_func (dst, mask, \
buf1, buf2, right_pad, weight1, weight2, 0, 0, 0, TRUE); \
} \
} \
else if (PIXMAN_REPEAT_ ## repeat_mode == PIXMAN_REPEAT_NORMAL) \
{ \
int32_t num_pixels; \
int32_t width_remain; \
src_type_t * src_line_top; \
src_type_t * src_line_bottom; \
src_type_t buf1[2]; \
src_type_t buf2[2]; \
src_type_t extended_src_line0[REPEAT_NORMAL_MIN_WIDTH*2]; \
src_type_t extended_src_line1[REPEAT_NORMAL_MIN_WIDTH*2]; \
int i, j; \
\
repeat (PIXMAN_REPEAT_NORMAL, &y1, src_image->bits.height); \
repeat (PIXMAN_REPEAT_NORMAL, &y2, src_image->bits.height); \
src_line_top = src_first_line + src_stride * y1; \
src_line_bottom = src_first_line + src_stride * y2; \
\
if (need_src_extension) \
{ \
for (i=0; i<src_width;) \
{ \
for (j=0; j<src_image->bits.width; j++, i++) \
{ \
extended_src_line0[i] = src_line_top[j]; \
extended_src_line1[i] = src_line_bottom[j]; \
} \
} \
\
src_line_top = &extended_src_line0[0]; \
src_line_bottom = &extended_src_line1[0]; \
} \
\
/* Top & Bottom wrap around buffer */ \
buf1[0] = src_line_top[src_width - 1]; \
buf1[1] = src_line_top[0]; \
buf2[0] = src_line_bottom[src_width - 1]; \
buf2[1] = src_line_bottom[0]; \
\
width_remain = width; \
\
while (width_remain > 0) \
{ \
/* We use src_width_fixed because it can make vx in original source range */ \
repeat (PIXMAN_REPEAT_NORMAL, &vx, src_width_fixed); \
\
/* Wrap around part */ \
if (pixman_fixed_to_int (vx) == src_width - 1) \
{ \
/* for positive unit_x \
* num_pixels = max(n) + 1, where vx + n*unit_x < src_width_fixed \
* \
* vx is in range [0, src_width_fixed - pixman_fixed_e] \
* So we are safe from overflow. \
*/ \
num_pixels = ((src_width_fixed - vx - pixman_fixed_e) / unit_x) + 1; \
\
if (num_pixels > width_remain) \
num_pixels = width_remain; \
\
scanline_func (dst, mask, buf1, buf2, num_pixels, \
weight1, weight2, pixman_fixed_frac(vx), \
unit_x, src_width_fixed, FALSE); \
\
width_remain -= num_pixels; \
vx += num_pixels * unit_x; \
dst += num_pixels; \
\
if (flags & FLAG_HAVE_NON_SOLID_MASK) \
mask += num_pixels; \
\
repeat (PIXMAN_REPEAT_NORMAL, &vx, src_width_fixed); \
} \
\
/* Normal scanline composite */ \
if (pixman_fixed_to_int (vx) != src_width - 1 && width_remain > 0) \
{ \
/* for positive unit_x \
* num_pixels = max(n) + 1, where vx + n*unit_x < (src_width_fixed - 1) \
* \
* vx is in range [0, src_width_fixed - pixman_fixed_e] \
* So we are safe from overflow here. \
*/ \
num_pixels = ((src_width_fixed - pixman_fixed_1 - vx - pixman_fixed_e) \
/ unit_x) + 1; \
\
if (num_pixels > width_remain) \
num_pixels = width_remain; \
\
scanline_func (dst, mask, src_line_top, src_line_bottom, num_pixels, \
weight1, weight2, vx, unit_x, src_width_fixed, FALSE); \
\
width_remain -= num_pixels; \
vx += num_pixels * unit_x; \
dst += num_pixels; \
\
if (flags & FLAG_HAVE_NON_SOLID_MASK) \
mask += num_pixels; \
} \
} \
} \
else \
{ \
scanline_func (dst, mask, src_first_line + src_stride * y1, \
src_first_line + src_stride * y2, width, \
weight1, weight2, vx, unit_x, max_vx, FALSE); \
} \
} \
}
/* A workaround for old sun studio, see: https://bugs.freedesktop.org/show_bug.cgi?id=32764 */
#define FAST_BILINEAR_MAINLOOP_COMMON(scale_func_name, scanline_func, src_type_t, mask_type_t, \
dst_type_t, repeat_mode, flags) \
FAST_BILINEAR_MAINLOOP_INT(_ ## scale_func_name, scanline_func, src_type_t, mask_type_t,\
dst_type_t, repeat_mode, flags)
#define SCALED_BILINEAR_FLAGS \
(FAST_PATH_SCALE_TRANSFORM | \
FAST_PATH_NO_ALPHA_MAP | \
FAST_PATH_BILINEAR_FILTER | \
FAST_PATH_NO_ACCESSORS | \
FAST_PATH_NARROW_FORMAT)
#define SIMPLE_BILINEAR_FAST_PATH_PAD(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_BILINEAR_FLAGS | \
FAST_PATH_PAD_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_null, 0, \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_bilinear_ ## func ## _pad ## _ ## op, \
}
#define SIMPLE_BILINEAR_FAST_PATH_NONE(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_BILINEAR_FLAGS | \
FAST_PATH_NONE_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_null, 0, \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_bilinear_ ## func ## _none ## _ ## op, \
}
#define SIMPLE_BILINEAR_FAST_PATH_COVER(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
SCALED_BILINEAR_FLAGS | FAST_PATH_SAMPLES_COVER_CLIP_BILINEAR, \
PIXMAN_null, 0, \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_bilinear_ ## func ## _cover ## _ ## op, \
}
#define SIMPLE_BILINEAR_FAST_PATH_NORMAL(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_BILINEAR_FLAGS | \
FAST_PATH_NORMAL_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_null, 0, \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_bilinear_ ## func ## _normal ## _ ## op, \
}
#define SIMPLE_BILINEAR_A8_MASK_FAST_PATH_PAD(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_BILINEAR_FLAGS | \
FAST_PATH_PAD_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_a8, MASK_FLAGS (a8, FAST_PATH_UNIFIED_ALPHA), \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_bilinear_ ## func ## _pad ## _ ## op, \
}
#define SIMPLE_BILINEAR_A8_MASK_FAST_PATH_NONE(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_BILINEAR_FLAGS | \
FAST_PATH_NONE_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_a8, MASK_FLAGS (a8, FAST_PATH_UNIFIED_ALPHA), \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_bilinear_ ## func ## _none ## _ ## op, \
}
#define SIMPLE_BILINEAR_A8_MASK_FAST_PATH_COVER(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
SCALED_BILINEAR_FLAGS | FAST_PATH_SAMPLES_COVER_CLIP_BILINEAR, \
PIXMAN_a8, MASK_FLAGS (a8, FAST_PATH_UNIFIED_ALPHA), \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_bilinear_ ## func ## _cover ## _ ## op, \
}
#define SIMPLE_BILINEAR_A8_MASK_FAST_PATH_NORMAL(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_BILINEAR_FLAGS | \
FAST_PATH_NORMAL_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_a8, MASK_FLAGS (a8, FAST_PATH_UNIFIED_ALPHA), \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_bilinear_ ## func ## _normal ## _ ## op, \
}
#define SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH_PAD(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_BILINEAR_FLAGS | \
FAST_PATH_PAD_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_solid, MASK_FLAGS (solid, FAST_PATH_UNIFIED_ALPHA), \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_bilinear_ ## func ## _pad ## _ ## op, \
}
#define SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH_NONE(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_BILINEAR_FLAGS | \
FAST_PATH_NONE_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_solid, MASK_FLAGS (solid, FAST_PATH_UNIFIED_ALPHA), \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_bilinear_ ## func ## _none ## _ ## op, \
}
#define SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH_COVER(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
SCALED_BILINEAR_FLAGS | FAST_PATH_SAMPLES_COVER_CLIP_BILINEAR, \
PIXMAN_solid, MASK_FLAGS (solid, FAST_PATH_UNIFIED_ALPHA), \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_bilinear_ ## func ## _cover ## _ ## op, \
}
#define SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH_NORMAL(op,s,d,func) \
{ PIXMAN_OP_ ## op, \
PIXMAN_ ## s, \
(SCALED_BILINEAR_FLAGS | \
FAST_PATH_NORMAL_REPEAT | \
FAST_PATH_X_UNIT_POSITIVE), \
PIXMAN_solid, MASK_FLAGS (solid, FAST_PATH_UNIFIED_ALPHA), \
PIXMAN_ ## d, FAST_PATH_STD_DEST_FLAGS, \
fast_composite_scaled_bilinear_ ## func ## _normal ## _ ## op, \
}
/* Prefer the use of 'cover' variant, because it is faster */
#define SIMPLE_BILINEAR_FAST_PATH(op,s,d,func) \
SIMPLE_BILINEAR_FAST_PATH_COVER (op,s,d,func), \
SIMPLE_BILINEAR_FAST_PATH_NONE (op,s,d,func), \
SIMPLE_BILINEAR_FAST_PATH_PAD (op,s,d,func), \
SIMPLE_BILINEAR_FAST_PATH_NORMAL (op,s,d,func)
#define SIMPLE_BILINEAR_A8_MASK_FAST_PATH(op,s,d,func) \
SIMPLE_BILINEAR_A8_MASK_FAST_PATH_COVER (op,s,d,func), \
SIMPLE_BILINEAR_A8_MASK_FAST_PATH_NONE (op,s,d,func), \
SIMPLE_BILINEAR_A8_MASK_FAST_PATH_PAD (op,s,d,func), \
SIMPLE_BILINEAR_A8_MASK_FAST_PATH_NORMAL (op,s,d,func)
#define SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH(op,s,d,func) \
SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH_COVER (op,s,d,func), \
SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH_NONE (op,s,d,func), \
SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH_PAD (op,s,d,func), \
SIMPLE_BILINEAR_SOLID_MASK_FAST_PATH_NORMAL (op,s,d,func)
#endif