Source code

Revision control

Copy as Markdown

Other Tools

/*
* Copyright © 2009 Nokia Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Author: Siarhei Siamashka (siarhei.siamashka@nokia.com)
*/
/*
* This file contains a macro ('generate_composite_function') which can
* construct 2D image processing functions, based on a common template.
* Any combinations of source, destination and mask images with 8bpp,
* 16bpp, 24bpp, 32bpp color formats are supported.
*
* This macro takes care of:
* - handling of leading and trailing unaligned pixels
* - doing most of the work related to L2 cache preload
* - encourages the use of software pipelining for better instructions
* scheduling
*
* The user of this macro has to provide some configuration parameters
* (bit depths for the images, prefetch distance, etc.) and a set of
* macros, which should implement basic code chunks responsible for
* pixels processing. See 'pixman-arm-neon-asm.S' file for the usage
* examples.
*
* TODO:
* - try overlapped pixel method (from Ian Rickards) when processing
* exactly two blocks of pixels
* - maybe add an option to do reverse scanline processing
*/
/*
* Bit flags for 'generate_composite_function' macro which are used
* to tune generated functions behavior.
*/
.set FLAG_DST_WRITEONLY, 0
.set FLAG_DST_READWRITE, 1
.set FLAG_DEINTERLEAVE_32BPP, 2
/*
* Offset in stack where mask and source pointer/stride can be accessed
* from 'init' macro. This is useful for doing special handling for solid mask.
*/
.set ARGS_STACK_OFFSET, 40
/*
* Constants for selecting preferable prefetch type.
*/
.set PREFETCH_TYPE_NONE, 0 /* No prefetch at all */
.set PREFETCH_TYPE_SIMPLE, 1 /* A simple, fixed-distance-ahead prefetch */
.set PREFETCH_TYPE_ADVANCED, 2 /* Advanced fine-grained prefetch */
/*
* Definitions of supplementary pixld/pixst macros (for partial load/store of
* pixel data).
*/
.macro pixldst1 op, elem_size, reg1, mem_operand, abits
.if \abits > 0
\op\().\()\elem_size {d\()\reg1}, [\()\mem_operand\(), :\()\abits\()]!
.else
\op\().\()\elem_size {d\()\reg1}, [\()\mem_operand\()]!
.endif
.endm
.macro pixldst2 op, elem_size, reg1, reg2, mem_operand, abits
.if \abits > 0
\op\().\()\elem_size {d\()\reg1, d\()\reg2}, [\()\mem_operand\(), :\()\abits\()]!
.else
\op\().\()\elem_size {d\()\reg1, d\()\reg2}, [\()\mem_operand\()]!
.endif
.endm
.macro pixldst4 op, elem_size, reg1, reg2, reg3, reg4, mem_operand, abits
.if \abits > 0
\op\().\()\elem_size {d\()\reg1, d\()\reg2, d\()\reg3, d\()\reg4}, [\()\mem_operand\(), :\()\abits\()]!
.else
\op\().\()\elem_size {d\()\reg1, d\()\reg2, d\()\reg3, d\()\reg4}, [\()\mem_operand\()]!
.endif
.endm
.macro pixldst0 op, elem_size, reg1, idx, mem_operand, abits
\op\().\()\elem_size {d\()\reg1[\idx]}, [\()\mem_operand\()]!
.endm
.macro pixldst3 op, elem_size, reg1, reg2, reg3, mem_operand
\op\().\()\elem_size {d\()\reg1, d\()\reg2, d\()\reg3}, [\()\mem_operand\()]!
.endm
.macro pixldst30 op, elem_size, reg1, reg2, reg3, idx, mem_operand
\op\().\()\elem_size {d\()\reg1[\idx], d\()\reg2[\idx], d\()\reg3[\idx]}, [\()\mem_operand\()]!
.endm
.macro pixldst numbytes, op, elem_size, basereg, mem_operand, abits
.if \numbytes == 32
pixldst4 \op, \elem_size, %(\basereg+4), %(\basereg+5), \
%(\basereg+6), %(\basereg+7), \mem_operand, \abits
.elseif \numbytes == 16
pixldst2 \op, \elem_size, %(\basereg+2), %(\basereg+3), \mem_operand, \abits
.elseif \numbytes == 8
pixldst1 \op, \elem_size, %(\basereg+1), \mem_operand, \abits
.elseif \numbytes == 4
.if !RESPECT_STRICT_ALIGNMENT || (\elem_size == 32)
pixldst0 \op, 32, %(\basereg+0), 1, \mem_operand, \abits
.elseif \elem_size == 16
pixldst0 \op, 16, %(\basereg+0), 2, \mem_operand, \abits
pixldst0 \op, 16, %(\basereg+0), 3, \mem_operand, \abits
.else
pixldst0 \op, 8, %(\basereg+0), 4, \mem_operand, \abits
pixldst0 \op, 8, %(\basereg+0), 5, \mem_operand, \abits
pixldst0 \op, 8, %(\basereg+0), 6, \mem_operand, \abits
pixldst0 \op, 8, %(\basereg+0), 7, \mem_operand, \abits
.endif
.elseif \numbytes == 2
.if !RESPECT_STRICT_ALIGNMENT || (\elem_size == 16)
pixldst0 \op, 16, %(\basereg+0), 1, \mem_operand, \abits
.else
pixldst0 \op, 8, %(\basereg+0), 2, \mem_operand, \abits
pixldst0 \op, 8, %(\basereg+0), 3, \mem_operand, \abits
.endif
.elseif \numbytes == 1
pixldst0 \op, 8, %(\basereg+0), 1, \mem_operand, \abits
.else
.error "unsupported size: \numbytes"
.endif
.endm
.macro pixld numpix, bpp, basereg, mem_operand, abits=0
.if \bpp > 0
.if (\bpp == 32) && (\numpix == 8) && (DEINTERLEAVE_32BPP_ENABLED != 0)
pixldst4 vld4, 8, %(\basereg+4), %(\basereg+5), \
%(\basereg+6), %(\basereg+7), \mem_operand, \abits
.elseif (\bpp == 24) && (\numpix == 8)
pixldst3 vld3, 8, %(\basereg+3), %(\basereg+4), %(\basereg+5), \mem_operand
.elseif (\bpp == 24) && (\numpix == 4)
pixldst30 vld3, 8, %(\basereg+0), %(\basereg+1), %(\basereg+2), 4, \mem_operand
pixldst30 vld3, 8, %(\basereg+0), %(\basereg+1), %(\basereg+2), 5, \mem_operand
pixldst30 vld3, 8, %(\basereg+0), %(\basereg+1), %(\basereg+2), 6, \mem_operand
pixldst30 vld3, 8, %(\basereg+0), %(\basereg+1), %(\basereg+2), 7, \mem_operand
.elseif (\bpp == 24) && (\numpix == 2)
pixldst30 vld3, 8, %(\basereg+0), %(\basereg+1), %(\basereg+2), 2, \mem_operand
pixldst30 vld3, 8, %(\basereg+0), %(\basereg+1), %(\basereg+2), 3, \mem_operand
.elseif (\bpp == 24) && (\numpix == 1)
pixldst30 vld3, 8, %(\basereg+0), %(\basereg+1), %(\basereg+2), 1, \mem_operand
.else
pixldst %(\numpix * \bpp / 8), vld1, %(\bpp), \basereg, \mem_operand, \abits
.endif
.endif
.endm
.macro pixst numpix, bpp, basereg, mem_operand, abits=0
.if \bpp > 0
.if (\bpp == 32) && (\numpix == 8) && (DEINTERLEAVE_32BPP_ENABLED != 0)
pixldst4 vst4, 8, %(\basereg+4), %(\basereg+5), \
%(\basereg+6), %(\basereg+7), \mem_operand, \abits
.elseif (\bpp == 24) && (\numpix == 8)
pixldst3 vst3, 8, %(\basereg+3), %(\basereg+4), %(\basereg+5), \mem_operand
.elseif (\bpp == 24) && (\numpix == 4)
pixldst30 vst3, 8, %(\basereg+0), %(\basereg+1), %(\basereg+2), 4, \mem_operand
pixldst30 vst3, 8, %(\basereg+0), %(\basereg+1), %(\basereg+2), 5, \mem_operand
pixldst30 vst3, 8, %(\basereg+0), %(\basereg+1), %(\basereg+2), 6, \mem_operand
pixldst30 vst3, 8, %(\basereg+0), %(\basereg+1), %(\basereg+2), 7, \mem_operand
.elseif (\bpp == 24) && (\numpix == 2)
pixldst30 vst3, 8, %(\basereg+0), %(\basereg+1), %(\basereg+2), 2, \mem_operand
pixldst30 vst3, 8, %(\basereg+0), %(\basereg+1), %(\basereg+2), 3, \mem_operand
.elseif (\bpp == 24) && (\numpix == 1)
pixldst30 vst3, 8, %(\basereg+0), %(\basereg+1), %(\basereg+2), 1, \mem_operand
.else
pixldst %(\numpix * \bpp / 8), vst1, %(\bpp), \basereg, \mem_operand, \abits
.endif
.endif
.endm
.macro pixld_a numpix, bpp, basereg, mem_operand
.if (\bpp * \numpix) <= 128
pixld \numpix, \bpp, \basereg, \mem_operand, %(\bpp * \numpix)
.else
pixld \numpix, \bpp, \basereg, \mem_operand, 128
.endif
.endm
.macro pixst_a numpix, bpp, basereg, mem_operand
.if (\bpp * \numpix) <= 128
pixst \numpix, \bpp, \basereg, \mem_operand, %(\bpp * \numpix)
.else
pixst \numpix, \bpp, \basereg, \mem_operand, 128
.endif
.endm
/*
* Pixel fetcher for nearest scaling (needs TMP1, TMP2, VX, UNIT_X register
* aliases to be defined)
*/
.macro pixld1_s elem_size, reg1, mem_operand
.if \elem_size == 16
mov TMP1, VX, asr #16
adds VX, VX, UNIT_X
5: subspl VX, VX, SRC_WIDTH_FIXED
bpl 5b
add TMP1, \mem_operand, TMP1, asl #1
mov TMP2, VX, asr #16
adds VX, VX, UNIT_X
5: subspl VX, VX, SRC_WIDTH_FIXED
bpl 5b
add TMP2, \mem_operand, TMP2, asl #1
vld1.16 {d\()\reg1\()[0]}, [TMP1, :16]
mov TMP1, VX, asr #16
adds VX, VX, UNIT_X
5: subspl VX, VX, SRC_WIDTH_FIXED
bpl 5b
add TMP1, \mem_operand, TMP1, asl #1
vld1.16 {d\()\reg1\()[1]}, [TMP2, :16]
mov TMP2, VX, asr #16
adds VX, VX, UNIT_X
5: subspl VX, VX, SRC_WIDTH_FIXED
bpl 5b
add TMP2, \mem_operand, TMP2, asl #1
vld1.16 {d\()\reg1\()[2]}, [TMP1, :16]
vld1.16 {d\()\reg1\()[3]}, [TMP2, :16]
.elseif \elem_size == 32
mov TMP1, VX, asr #16
adds VX, VX, UNIT_X
5: subspl VX, VX, SRC_WIDTH_FIXED
bpl 5b
add TMP1, \mem_operand, TMP1, asl #2
mov TMP2, VX, asr #16
adds VX, VX, UNIT_X
5: subspl VX, VX, SRC_WIDTH_FIXED
bpl 5b
add TMP2, \mem_operand, TMP2, asl #2
vld1.32 {d\()\reg1\()[0]}, [TMP1, :32]
vld1.32 {d\()\reg1\()[1]}, [TMP2, :32]
.else
.error "unsupported"
.endif
.endm
.macro pixld2_s elem_size, reg1, reg2, mem_operand
.if 0 /* elem_size == 32 */
mov TMP1, VX, asr #16
add VX, VX, UNIT_X, asl #1
add TMP1, \mem_operand, TMP1, asl #2
mov TMP2, VX, asr #16
sub VX, VX, UNIT_X
add TMP2, \mem_operand, TMP2, asl #2
vld1.32 {d\()\reg1\()[0]}, [TMP1, :32]
mov TMP1, VX, asr #16
add VX, VX, UNIT_X, asl #1
add TMP1, \mem_operand, TMP1, asl #2
vld1.32 {d\()\reg2\()[0]}, [TMP2, :32]
mov TMP2, VX, asr #16
add VX, VX, UNIT_X
add TMP2, \mem_operand, TMP2, asl #2
vld1.32 {d\()\reg1\()[1]}, [TMP1, :32]
vld1.32 {d\()\reg2\()[1]}, [TMP2, :32]
.else
pixld1_s \elem_size, \reg1, \mem_operand
pixld1_s \elem_size, \reg2, \mem_operand
.endif
.endm
.macro pixld0_s elem_size, reg1, idx, mem_operand
.if \elem_size == 16
mov TMP1, VX, asr #16
adds VX, VX, UNIT_X
5: subspl VX, VX, SRC_WIDTH_FIXED
bpl 5b
add TMP1, \mem_operand, TMP1, asl #1
vld1.16 {d\()\reg1\()[\idx]}, [TMP1, :16]
.elseif \elem_size == 32
mov TMP1, VX, asr #16
adds VX, VX, UNIT_X
5: subspl VX, VX, SRC_WIDTH_FIXED
bpl 5b
add TMP1, \mem_operand, TMP1, asl #2
vld1.32 {d\()\reg1\()[\idx]}, [TMP1, :32]
.endif
.endm
.macro pixld_s_internal numbytes, elem_size, basereg, mem_operand
.if \numbytes == 32
pixld2_s \elem_size, %(\basereg+4), %(\basereg+5), \mem_operand
pixld2_s \elem_size, %(\basereg+6), %(\basereg+7), \mem_operand
pixdeinterleave \elem_size, %(\basereg+4)
.elseif \numbytes == 16
pixld2_s \elem_size, %(\basereg+2), %(\basereg+3), \mem_operand
.elseif \numbytes == 8
pixld1_s \elem_size, %(\basereg+1), \mem_operand
.elseif \numbytes == 4
.if \elem_size == 32
pixld0_s \elem_size, %(\basereg+0), 1, \mem_operand
.elseif \elem_size == 16
pixld0_s \elem_size, %(\basereg+0), 2, \mem_operand
pixld0_s \elem_size, %(\basereg+0), 3, \mem_operand
.else
pixld0_s \elem_size, %(\basereg+0), 4, \mem_operand
pixld0_s \elem_size, %(\basereg+0), 5, \mem_operand
pixld0_s \elem_size, %(\basereg+0), 6, \mem_operand
pixld0_s \elem_size, %(\basereg+0), 7, \mem_operand
.endif
.elseif \numbytes == 2
.if \elem_size == 16
pixld0_s \elem_size, %(\basereg+0), 1, \mem_operand
.else
pixld0_s \elem_size, %(\basereg+0), 2, \mem_operand
pixld0_s \elem_size, %(\basereg+0), 3, \mem_operand
.endif
.elseif \numbytes == 1
pixld0_s \elem_size, %(\basereg+0), 1, \mem_operand
.else
.error "unsupported size: \numbytes"
.endif
.endm
.macro pixld_s numpix, bpp, basereg, mem_operand
.if \bpp > 0
pixld_s_internal %(\numpix * \bpp / 8), %(\bpp), \basereg, \mem_operand
.endif
.endm
.macro vuzp8 reg1, reg2
vuzp.8 d\()\reg1, d\()\reg2
.endm
.macro vzip8 reg1, reg2
vzip.8 d\()\reg1, d\()\reg2
.endm
/* deinterleave B, G, R, A channels for eight 32bpp pixels in 4 registers */
.macro pixdeinterleave bpp, basereg
.if (\bpp == 32) && (DEINTERLEAVE_32BPP_ENABLED != 0)
vuzp8 %(\basereg+0), %(\basereg+1)
vuzp8 %(\basereg+2), %(\basereg+3)
vuzp8 %(\basereg+1), %(\basereg+3)
vuzp8 %(\basereg+0), %(\basereg+2)
.endif
.endm
/* interleave B, G, R, A channels for eight 32bpp pixels in 4 registers */
.macro pixinterleave bpp, basereg
.if (\bpp == 32) && (DEINTERLEAVE_32BPP_ENABLED != 0)
vzip8 %(\basereg+0), %(\basereg+2)
vzip8 %(\basereg+1), %(\basereg+3)
vzip8 %(\basereg+2), %(\basereg+3)
vzip8 %(\basereg+0), %(\basereg+1)
.endif
.endm
/*
* This is a macro for implementing cache preload. The main idea is that
* cache preload logic is mostly independent from the rest of pixels
* processing code. It starts at the top left pixel and moves forward
* across pixels and can jump across scanlines. Prefetch distance is
* handled in an 'incremental' way: it starts from 0 and advances to the
* optimal distance over time. After reaching optimal prefetch distance,
* it is kept constant. There are some checks which prevent prefetching
* unneeded pixel lines below the image (but it still can prefetch a bit
* more data on the right side of the image - not a big issue and may
* be actually helpful when rendering text glyphs). Additional trick is
* the use of LDR instruction for prefetch instead of PLD when moving to
* the next line, the point is that we have a high chance of getting TLB
* miss in this case, and PLD would be useless.
*
* This sounds like it may introduce a noticeable overhead (when working with
* fully cached data). But in reality, due to having a separate pipeline and
* instruction queue for NEON unit in ARM Cortex-A8, normal ARM code can
* execute simultaneously with NEON and be completely shadowed by it. Thus
* we get no performance overhead at all (*). This looks like a very nice
* feature of Cortex-A8, if used wisely. We don't have a hardware prefetcher,
* but still can implement some rather advanced prefetch logic in software
* for almost zero cost!
*
* (*) The overhead of the prefetcher is visible when running some trivial
* pixels processing like simple copy. Anyway, having prefetch is a must
* when working with the graphics data.
*/
.macro PF a, x:vararg
.if (PREFETCH_TYPE_CURRENT == PREFETCH_TYPE_ADVANCED)
\a \x
.endif
.endm
.macro cache_preload std_increment, boost_increment
.if (src_bpp_shift >= 0) || (dst_r_bpp != 0) || (mask_bpp_shift >= 0)
.if regs_shortage
PF ldr, ORIG_W, [sp] /* If we are short on regs, ORIG_W is kept on stack */
.endif
.if \std_increment != 0
PF add, PF_X, PF_X, #\std_increment
.endif
PF tst, PF_CTL, #0xF
PF addne, PF_X, PF_X, #\boost_increment
PF subne, PF_CTL, PF_CTL, #1
PF cmp, PF_X, ORIG_W
.if src_bpp_shift >= 0
PF pld, [PF_SRC, PF_X, lsl #src_bpp_shift]
.endif
.if dst_r_bpp != 0
PF pld, [PF_DST, PF_X, lsl #dst_bpp_shift]
.endif
.if mask_bpp_shift >= 0
PF pld, [PF_MASK, PF_X, lsl #mask_bpp_shift]
.endif
PF subge, PF_X, PF_X, ORIG_W
PF subsge, PF_CTL, PF_CTL, #0x10
.if src_bpp_shift >= 0
PF ldrbge, DUMMY, [PF_SRC, SRC_STRIDE, lsl #src_bpp_shift]!
.endif
.if dst_r_bpp != 0
PF ldrbge, DUMMY, [PF_DST, DST_STRIDE, lsl #dst_bpp_shift]!
.endif
.if mask_bpp_shift >= 0
PF ldrbge, DUMMY, [PF_MASK, MASK_STRIDE, lsl #mask_bpp_shift]!
.endif
.endif
.endm
.macro cache_preload_simple
.if (PREFETCH_TYPE_CURRENT == PREFETCH_TYPE_SIMPLE)
.if src_bpp > 0
pld [SRC, #(PREFETCH_DISTANCE_SIMPLE * src_bpp / 8)]
.endif
.if dst_r_bpp > 0
pld [DST_R, #(PREFETCH_DISTANCE_SIMPLE * dst_r_bpp / 8)]
.endif
.if mask_bpp > 0
pld [MASK, #(PREFETCH_DISTANCE_SIMPLE * mask_bpp / 8)]
.endif
.endif
.endm
.macro fetch_mask_pixblock
pixld pixblock_size, mask_bpp, \
(mask_basereg - pixblock_size * mask_bpp / 64), MASK
.endm
/*
* Macro which is used to process leading pixels until destination
* pointer is properly aligned (at 16 bytes boundary). When destination
* buffer uses 16bpp format, this is unnecessary, or even pointless.
*/
.macro ensure_destination_ptr_alignment process_pixblock_head, \
process_pixblock_tail, \
process_pixblock_tail_head
.if dst_w_bpp != 24
tst DST_R, #0xF
beq 2f
.irp lowbit, 1, 2, 4, 8, 16
.if (dst_w_bpp <= (\lowbit * 8)) && ((\lowbit * 8) < (pixblock_size * dst_w_bpp))
.if \lowbit < 16 /* we don't need more than 16-byte alignment */
tst DST_R, #\lowbit
beq 1f
.endif
pixld_src (\lowbit * 8 / dst_w_bpp), src_bpp, src_basereg, SRC
pixld (\lowbit * 8 / dst_w_bpp), mask_bpp, mask_basereg, MASK
.if dst_r_bpp > 0
pixld_a (\lowbit * 8 / dst_r_bpp), dst_r_bpp, dst_r_basereg, DST_R
.else
add DST_R, DST_R, #\lowbit
.endif
PF add, PF_X, PF_X, #(\lowbit * 8 / dst_w_bpp)
sub W, W, #(\lowbit * 8 / dst_w_bpp)
1:
.endif
.endr
pixdeinterleave src_bpp, src_basereg
pixdeinterleave mask_bpp, mask_basereg
pixdeinterleave dst_r_bpp, dst_r_basereg
\process_pixblock_head
cache_preload 0, pixblock_size
cache_preload_simple
\process_pixblock_tail
pixinterleave dst_w_bpp, dst_w_basereg
.irp lowbit, 1, 2, 4, 8, 16
.if (dst_w_bpp <= (\lowbit * 8)) && ((\lowbit * 8) < (pixblock_size * dst_w_bpp))
.if \lowbit < 16 /* we don't need more than 16-byte alignment */
tst DST_W, #\lowbit
beq 1f
.endif
pixst_a (\lowbit * 8 / dst_w_bpp), dst_w_bpp, dst_w_basereg, DST_W
1:
.endif
.endr
.endif
2:
.endm
/*
* Special code for processing up to (pixblock_size - 1) remaining
* trailing pixels. As SIMD processing performs operation on
* pixblock_size pixels, anything smaller than this has to be loaded
* and stored in a special way. Loading and storing of pixel data is
* performed in such a way that we fill some 'slots' in the NEON
* registers (some slots naturally are unused), then perform compositing
* operation as usual. In the end, the data is taken from these 'slots'
* and saved to memory.
*
* cache_preload_flag - allows to suppress prefetch if
* set to 0
* dst_aligned_flag - selects whether destination buffer
* is aligned
*/
.macro process_trailing_pixels cache_preload_flag, \
dst_aligned_flag, \
process_pixblock_head, \
process_pixblock_tail, \
process_pixblock_tail_head
tst W, #(pixblock_size - 1)
beq 2f
.irp chunk_size, 16, 8, 4, 2, 1
.if pixblock_size > \chunk_size
tst W, #\chunk_size
beq 1f
pixld_src \chunk_size, src_bpp, src_basereg, SRC
pixld \chunk_size, mask_bpp, mask_basereg, MASK
.if \dst_aligned_flag != 0
pixld_a \chunk_size, dst_r_bpp, dst_r_basereg, DST_R
.else
pixld \chunk_size, dst_r_bpp, dst_r_basereg, DST_R
.endif
.if \cache_preload_flag != 0
PF add, PF_X, PF_X, #\chunk_size
.endif
1:
.endif
.endr
pixdeinterleave src_bpp, src_basereg
pixdeinterleave mask_bpp, mask_basereg
pixdeinterleave dst_r_bpp, dst_r_basereg
\process_pixblock_head
.if \cache_preload_flag != 0
cache_preload 0, pixblock_size
cache_preload_simple
.endif
\process_pixblock_tail
pixinterleave dst_w_bpp, dst_w_basereg
.irp chunk_size, 16, 8, 4, 2, 1
.if pixblock_size > \chunk_size
tst W, #\chunk_size
beq 1f
.if \dst_aligned_flag != 0
pixst_a \chunk_size, dst_w_bpp, dst_w_basereg, DST_W
.else
pixst \chunk_size, dst_w_bpp, dst_w_basereg, DST_W
.endif
1:
.endif
.endr
2:
.endm
/*
* Macro, which performs all the needed operations to switch to the next
* scanline and start the next loop iteration unless all the scanlines
* are already processed.
*/
.macro advance_to_next_scanline start_of_loop_label
.if regs_shortage
ldrd W, [sp] /* load W and H (width and height) from stack */
.else
mov W, ORIG_W
.endif
add DST_W, DST_W, DST_STRIDE, lsl #dst_bpp_shift
.if src_bpp != 0
add SRC, SRC, SRC_STRIDE, lsl #src_bpp_shift
.endif
.if mask_bpp != 0
add MASK, MASK, MASK_STRIDE, lsl #mask_bpp_shift
.endif
.if (dst_w_bpp != 24)
sub DST_W, DST_W, W, lsl #dst_bpp_shift
.endif
.if (src_bpp != 24) && (src_bpp != 0)
sub SRC, SRC, W, lsl #src_bpp_shift
.endif
.if (mask_bpp != 24) && (mask_bpp != 0)
sub MASK, MASK, W, lsl #mask_bpp_shift
.endif
subs H, H, #1
mov DST_R, DST_W
.if regs_shortage
str H, [sp, #4] /* save updated height to stack */
.endif
bge \start_of_loop_label
.endm
/*
* Registers are allocated in the following way by default:
* d0, d1, d2, d3 - reserved for loading source pixel data
* d4, d5, d6, d7 - reserved for loading destination pixel data
* d24, d25, d26, d27 - reserved for loading mask pixel data
* d28, d29, d30, d31 - final destination pixel data for writeback to memory
*/
.macro generate_composite_function fname, \
src_bpp_, \
mask_bpp_, \
dst_w_bpp_, \
flags, \
pixblock_size_, \
prefetch_distance, \
init, \
cleanup, \
process_pixblock_head, \
process_pixblock_tail, \
process_pixblock_tail_head, \
dst_w_basereg_ = 28, \
dst_r_basereg_ = 4, \
src_basereg_ = 0, \
mask_basereg_ = 24
pixman_asm_function \fname
push {r4-r12, lr} /* save all registers */
/*
* Select prefetch type for this function. If prefetch distance is
* set to 0 or one of the color formats is 24bpp, SIMPLE prefetch
* has to be used instead of ADVANCED.
*/
.set PREFETCH_TYPE_CURRENT, PREFETCH_TYPE_DEFAULT
.if \prefetch_distance == 0
.set PREFETCH_TYPE_CURRENT, PREFETCH_TYPE_NONE
.elseif (PREFETCH_TYPE_CURRENT > PREFETCH_TYPE_SIMPLE) && \
((\src_bpp_ == 24) || (\mask_bpp_ == 24) || (\dst_w_bpp_ == 24))
.set PREFETCH_TYPE_CURRENT, PREFETCH_TYPE_SIMPLE
.endif
/*
* Make some macro arguments globally visible and accessible
* from other macros
*/
.set src_bpp, \src_bpp_
.set mask_bpp, \mask_bpp_
.set dst_w_bpp, \dst_w_bpp_
.set pixblock_size, \pixblock_size_
.set dst_w_basereg, \dst_w_basereg_
.set dst_r_basereg, \dst_r_basereg_
.set src_basereg, \src_basereg_
.set mask_basereg, \mask_basereg_
.macro pixld_src x:vararg
pixld \x
.endm
.macro fetch_src_pixblock
pixld_src pixblock_size, src_bpp, \
(src_basereg - pixblock_size * src_bpp / 64), SRC
.endm
/*
* Assign symbolic names to registers
*/
W .req r0 /* width (is updated during processing) */
H .req r1 /* height (is updated during processing) */
DST_W .req r2 /* destination buffer pointer for writes */
DST_STRIDE .req r3 /* destination image stride */
SRC .req r4 /* source buffer pointer */
SRC_STRIDE .req r5 /* source image stride */
DST_R .req r6 /* destination buffer pointer for reads */
MASK .req r7 /* mask pointer */
MASK_STRIDE .req r8 /* mask stride */
PF_CTL .req r9 /* combined lines counter and prefetch */
/* distance increment counter */
PF_X .req r10 /* pixel index in a scanline for current */
/* pretetch position */
PF_SRC .req r11 /* pointer to source scanline start */
/* for prefetch purposes */
PF_DST .req r12 /* pointer to destination scanline start */
/* for prefetch purposes */
PF_MASK .req r14 /* pointer to mask scanline start */
/* for prefetch purposes */
/*
* Check whether we have enough registers for all the local variables.
* If we don't have enough registers, original width and height are
* kept on top of stack (and 'regs_shortage' variable is set to indicate
* this for the rest of code). Even if there are enough registers, the
* allocation scheme may be a bit different depending on whether source
* or mask is not used.
*/
.if (PREFETCH_TYPE_CURRENT < PREFETCH_TYPE_ADVANCED)
ORIG_W .req r10 /* saved original width */
DUMMY .req r12 /* temporary register */
.set regs_shortage, 0
.elseif mask_bpp == 0
ORIG_W .req r7 /* saved original width */
DUMMY .req r8 /* temporary register */
.set regs_shortage, 0
.elseif src_bpp == 0
ORIG_W .req r4 /* saved original width */
DUMMY .req r5 /* temporary register */
.set regs_shortage, 0
.else
ORIG_W .req r1 /* saved original width */
DUMMY .req r1 /* temporary register */
.set regs_shortage, 1
.endif
.set mask_bpp_shift, -1
.if src_bpp == 32
.set src_bpp_shift, 2
.elseif src_bpp == 24
.set src_bpp_shift, 0
.elseif src_bpp == 16
.set src_bpp_shift, 1
.elseif src_bpp == 8
.set src_bpp_shift, 0
.elseif src_bpp == 0
.set src_bpp_shift, -1
.else
.error "requested src bpp (src_bpp) is not supported"
.endif
.if mask_bpp == 32
.set mask_bpp_shift, 2
.elseif mask_bpp == 24
.set mask_bpp_shift, 0
.elseif mask_bpp == 8
.set mask_bpp_shift, 0
.elseif mask_bpp == 0
.set mask_bpp_shift, -1
.else
.error "requested mask bpp (mask_bpp) is not supported"
.endif
.if dst_w_bpp == 32
.set dst_bpp_shift, 2
.elseif dst_w_bpp == 24
.set dst_bpp_shift, 0
.elseif dst_w_bpp == 16
.set dst_bpp_shift, 1
.elseif dst_w_bpp == 8
.set dst_bpp_shift, 0
.else
.error "requested dst bpp (dst_w_bpp) is not supported"
.endif
.if (((\flags) & FLAG_DST_READWRITE) != 0)
.set dst_r_bpp, dst_w_bpp
.else
.set dst_r_bpp, 0
.endif
.if (((\flags) & FLAG_DEINTERLEAVE_32BPP) != 0)
.set DEINTERLEAVE_32BPP_ENABLED, 1
.else
.set DEINTERLEAVE_32BPP_ENABLED, 0
.endif
.if \prefetch_distance < 0 || \prefetch_distance > 15
.error "invalid prefetch distance (\prefetch_distance)"
.endif
.if src_bpp > 0
ldr SRC, [sp, #40]
.endif
.if mask_bpp > 0
ldr MASK, [sp, #48]
.endif
PF mov, PF_X, #0
.if src_bpp > 0
ldr SRC_STRIDE, [sp, #44]
.endif
.if mask_bpp > 0
ldr MASK_STRIDE, [sp, #52]
.endif
mov DST_R, DST_W
.if src_bpp == 24
sub SRC_STRIDE, SRC_STRIDE, W
sub SRC_STRIDE, SRC_STRIDE, W, lsl #1
.endif
.if mask_bpp == 24
sub MASK_STRIDE, MASK_STRIDE, W
sub MASK_STRIDE, MASK_STRIDE, W, lsl #1
.endif
.if dst_w_bpp == 24
sub DST_STRIDE, DST_STRIDE, W
sub DST_STRIDE, DST_STRIDE, W, lsl #1
.endif
/*
* Setup advanced prefetcher initial state
*/
PF mov, PF_SRC, SRC
PF mov, PF_DST, DST_R
PF mov, PF_MASK, MASK
/* PF_CTL = prefetch_distance | ((h - 1) << 4) */
PF mov, PF_CTL, H, lsl #4
PF add, PF_CTL, #(\prefetch_distance - 0x10)
\init
.if regs_shortage
push {r0, r1}
.endif
subs H, H, #1
.if regs_shortage
str H, [sp, #4] /* save updated height to stack */
.else
mov ORIG_W, W
.endif
blt 9f
cmp W, #(pixblock_size * 2)
blt 8f
/*
* This is the start of the pipelined loop, which if optimized for
* long scanlines
*/
0:
ensure_destination_ptr_alignment \process_pixblock_head, \
\process_pixblock_tail, \
\process_pixblock_tail_head
/* Implement "head (tail_head) ... (tail_head) tail" loop pattern */
pixld_a pixblock_size, dst_r_bpp, \
(dst_r_basereg - pixblock_size * dst_r_bpp / 64), DST_R
fetch_src_pixblock
pixld pixblock_size, mask_bpp, \
(mask_basereg - pixblock_size * mask_bpp / 64), MASK
PF add, PF_X, PF_X, #pixblock_size
\process_pixblock_head
cache_preload 0, pixblock_size
cache_preload_simple
subs W, W, #(pixblock_size * 2)
blt 2f
1:
\process_pixblock_tail_head
cache_preload_simple
subs W, W, #pixblock_size
bge 1b
2:
\process_pixblock_tail
pixst_a pixblock_size, dst_w_bpp, \
(dst_w_basereg - pixblock_size * dst_w_bpp / 64), DST_W
/* Process the remaining trailing pixels in the scanline */
process_trailing_pixels 1, 1, \
\process_pixblock_head, \
\process_pixblock_tail, \
\process_pixblock_tail_head
advance_to_next_scanline 0b
.if regs_shortage
pop {r0, r1}
.endif
\cleanup
pop {r4-r12, pc} /* exit */
/*
* This is the start of the loop, designed to process images with small width
* (less than pixblock_size * 2 pixels). In this case neither pipelining
* nor prefetch are used.
*/
8:
/* Process exactly pixblock_size pixels if needed */
tst W, #pixblock_size
beq 1f
pixld pixblock_size, dst_r_bpp, \
(dst_r_basereg - pixblock_size * dst_r_bpp / 64), DST_R
fetch_src_pixblock
pixld pixblock_size, mask_bpp, \
(mask_basereg - pixblock_size * mask_bpp / 64), MASK
\process_pixblock_head
\process_pixblock_tail
pixst pixblock_size, dst_w_bpp, \
(dst_w_basereg - pixblock_size * dst_w_bpp / 64), DST_W
1:
/* Process the remaining trailing pixels in the scanline */
process_trailing_pixels 0, 0, \
\process_pixblock_head, \
\process_pixblock_tail, \
\process_pixblock_tail_head
advance_to_next_scanline 8b
9:
.if regs_shortage
pop {r0, r1}
.endif
\cleanup
pop {r4-r12, pc} /* exit */
.purgem fetch_src_pixblock
.purgem pixld_src
.unreq SRC
.unreq MASK
.unreq DST_R
.unreq DST_W
.unreq ORIG_W
.unreq W
.unreq H
.unreq SRC_STRIDE
.unreq DST_STRIDE
.unreq MASK_STRIDE
.unreq PF_CTL
.unreq PF_X
.unreq PF_SRC
.unreq PF_DST
.unreq PF_MASK
.unreq DUMMY
pixman_end_asm_function
.endm
/*
* A simplified variant of function generation template for a single
* scanline processing (for implementing pixman combine functions)
*/
.macro generate_composite_function_scanline use_nearest_scaling, \
fname, \
src_bpp_, \
mask_bpp_, \
dst_w_bpp_, \
flags, \
pixblock_size_, \
init, \
cleanup, \
process_pixblock_head, \
process_pixblock_tail, \
process_pixblock_tail_head, \
dst_w_basereg_ = 28, \
dst_r_basereg_ = 4, \
src_basereg_ = 0, \
mask_basereg_ = 24
pixman_asm_function \fname
.set PREFETCH_TYPE_CURRENT, PREFETCH_TYPE_NONE
/*
* Make some macro arguments globally visible and accessible
* from other macros
*/
.set src_bpp, \src_bpp_
.set mask_bpp, \mask_bpp_
.set dst_w_bpp, \dst_w_bpp_
.set pixblock_size, \pixblock_size_
.set dst_w_basereg, \dst_w_basereg_
.set dst_r_basereg, \dst_r_basereg_
.set src_basereg, \src_basereg_
.set mask_basereg, \mask_basereg_
.if \use_nearest_scaling != 0
/*
* Assign symbolic names to registers for nearest scaling
*/
W .req r0
DST_W .req r1
SRC .req r2
VX .req r3
UNIT_X .req ip
MASK .req lr
TMP1 .req r4
TMP2 .req r5
DST_R .req r6
SRC_WIDTH_FIXED .req r7
.macro pixld_src x:vararg
pixld_s \x
.endm
ldr UNIT_X, [sp]
push {r4-r8, lr}
ldr SRC_WIDTH_FIXED, [sp, #(24 + 4)]
.if mask_bpp != 0
ldr MASK, [sp, #(24 + 8)]
.endif
.else
/*
* Assign symbolic names to registers
*/
W .req r0 /* width (is updated during processing) */
DST_W .req r1 /* destination buffer pointer for writes */
SRC .req r2 /* source buffer pointer */
DST_R .req ip /* destination buffer pointer for reads */
MASK .req r3 /* mask pointer */
.macro pixld_src x:vararg
pixld \x
.endm
.endif
.if (((\flags) & FLAG_DST_READWRITE) != 0)
.set dst_r_bpp, dst_w_bpp
.else
.set dst_r_bpp, 0
.endif
.if (((\flags) & FLAG_DEINTERLEAVE_32BPP) != 0)
.set DEINTERLEAVE_32BPP_ENABLED, 1
.else
.set DEINTERLEAVE_32BPP_ENABLED, 0
.endif
.macro fetch_src_pixblock
pixld_src pixblock_size, src_bpp, \
(src_basereg - pixblock_size * src_bpp / 64), SRC
.endm
\init
mov DST_R, DST_W
cmp W, #pixblock_size
blt 8f
ensure_destination_ptr_alignment \process_pixblock_head, \
\process_pixblock_tail, \
\process_pixblock_tail_head
subs W, W, #pixblock_size
blt 7f
/* Implement "head (tail_head) ... (tail_head) tail" loop pattern */
pixld_a pixblock_size, dst_r_bpp, \
(dst_r_basereg - pixblock_size * dst_r_bpp / 64), DST_R
fetch_src_pixblock
pixld pixblock_size, mask_bpp, \
(mask_basereg - pixblock_size * mask_bpp / 64), MASK
\process_pixblock_head
subs W, W, #pixblock_size
blt 2f
1:
\process_pixblock_tail_head
subs W, W, #pixblock_size
bge 1b
2:
\process_pixblock_tail
pixst_a pixblock_size, dst_w_bpp, \
(dst_w_basereg - pixblock_size * dst_w_bpp / 64), DST_W
7:
/* Process the remaining trailing pixels in the scanline (dst aligned) */
process_trailing_pixels 0, 1, \
\process_pixblock_head, \
\process_pixblock_tail, \
\process_pixblock_tail_head
\cleanup
.if \use_nearest_scaling != 0
pop {r4-r8, pc} /* exit */
.else
bx lr /* exit */
.endif
8:
/* Process the remaining trailing pixels in the scanline (dst unaligned) */
process_trailing_pixels 0, 0, \
\process_pixblock_head, \
\process_pixblock_tail, \
\process_pixblock_tail_head
\cleanup
.if \use_nearest_scaling != 0
pop {r4-r8, pc} /* exit */
.unreq DST_R
.unreq SRC
.unreq W
.unreq VX
.unreq UNIT_X
.unreq TMP1
.unreq TMP2
.unreq DST_W
.unreq MASK
.unreq SRC_WIDTH_FIXED
.else
bx lr /* exit */
.unreq SRC
.unreq MASK
.unreq DST_R
.unreq DST_W
.unreq W
.endif
.purgem fetch_src_pixblock
.purgem pixld_src
pixman_end_asm_function
.endm
.macro generate_composite_function_single_scanline x:vararg
generate_composite_function_scanline 0, \x
.endm
.macro generate_composite_function_nearest_scanline x:vararg
generate_composite_function_scanline 1, \x
.endm
/* Default prologue/epilogue, nothing special needs to be done */
.macro default_init
.endm
.macro default_cleanup
.endm
/*
* Prologue/epilogue variant which additionally saves/restores d8-d15
* registers (they need to be saved/restored by callee according to ABI).
* This is required if the code needs to use all the NEON registers.
*/
.macro default_init_need_all_regs
vpush {d8-d15}
.endm
.macro default_cleanup_need_all_regs
vpop {d8-d15}
.endm
/******************************************************************************/
/*
* Conversion of 8 r5g6b6 pixels packed in 128-bit register (in)
* into a planar a8r8g8b8 format (with a, r, g, b color components
* stored into 64-bit registers out_a, out_r, out_g, out_b respectively).
*
* Warning: the conversion is destructive and the original
* value (in) is lost.
*/
.macro convert_0565_to_8888 in, out_a, out_r, out_g, out_b
vshrn.u16 \out_r, \in, #8
vshrn.u16 \out_g, \in, #3
vsli.u16 \in, \in, #5
vmov.u8 \out_a, #255
vsri.u8 \out_r, \out_r, #5
vsri.u8 \out_g, \out_g, #6
vshrn.u16 \out_b, \in, #2
.endm
.macro convert_0565_to_x888 in, out_r, out_g, out_b
vshrn.u16 \out_r, \in, #8
vshrn.u16 \out_g, \in, #3
vsli.u16 \in, \in, #5
vsri.u8 \out_r, \out_r, #5
vsri.u8 \out_g, \out_g, #6
vshrn.u16 \out_b, \in, #2
.endm
/*
* Conversion from planar a8r8g8b8 format (with a, r, g, b color components
* in 64-bit registers in_a, in_r, in_g, in_b respectively) into 8 r5g6b6
* pixels packed in 128-bit register (out). Requires two temporary 128-bit
* registers (tmp1, tmp2)
*/
.macro convert_8888_to_0565 in_r, in_g, in_b, out, tmp1, tmp2
vshll.u8 \tmp1, \in_g, #8
vshll.u8 \out, \in_r, #8
vshll.u8 \tmp2, \in_b, #8
vsri.u16 \out, \tmp1, #5
vsri.u16 \out, \tmp2, #11
.endm
/*
* Conversion of four r5g6b5 pixels (in) to four x8r8g8b8 pixels
* returned in (out0, out1) registers pair. Requires one temporary
* 64-bit register (tmp). 'out1' and 'in' may overlap, the original
* value from 'in' is lost
*/
.macro convert_four_0565_to_x888_packed in, out0, out1, tmp
vshl.u16 \out0, \in, #5 /* G top 6 bits */
vshl.u16 \tmp, \in, #11 /* B top 5 bits */
vsri.u16 \in, \in, #5 /* R is ready in top bits */
vsri.u16 \out0, \out0, #6 /* G is ready in top bits */
vsri.u16 \tmp, \tmp, #5 /* B is ready in top bits */
vshr.u16 \out1, \in, #8 /* R is in place */
vsri.u16 \out0, \tmp, #8 /* G & B is in place */
vzip.u16 \out0, \out1 /* everything is in place */
.endm