Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 20; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
#include "WebGPUParent.h"
#include <unordered_set>
#include "mozilla/PodOperations.h"
#include "mozilla/ScopeExit.h"
#include "mozilla/dom/WebGPUBinding.h"
#include "mozilla/gfx/FileHandleWrapper.h"
#include "mozilla/layers/CompositorThread.h"
#include "mozilla/layers/ImageDataSerializer.h"
#include "mozilla/layers/RemoteTextureMap.h"
#include "mozilla/layers/TextureHost.h"
#include "mozilla/layers/WebRenderImageHost.h"
#include "mozilla/layers/WebRenderTextureHost.h"
#include "mozilla/webgpu/ExternalTexture.h"
#include "mozilla/webgpu/ffi/wgpu.h"
#if defined(XP_WIN)
# include "mozilla/gfx/DeviceManagerDx.h"
#endif
#if MOZ_WIDGET_GTK
# include "mozilla/webgpu/ExternalTextureDMABuf.h"
#endif
#if defined(XP_MACOSX)
# include "mozilla/webgpu/ExternalTextureMacIOSurface.h"
#endif
namespace mozilla::webgpu {
const uint64_t POLL_TIME_MS = 100;
static mozilla::LazyLogModule sLogger("WebGPU");
namespace ffi {
extern bool wgpu_server_use_external_texture_for_swap_chain(
void* aParam, WGPUSwapChainId aSwapChainId) {
auto* parent = static_cast<WebGPUParent*>(aParam);
return parent->UseExternalTextureForSwapChain(aSwapChainId);
}
extern void wgpu_server_disable_external_texture_for_swap_chain(
void* aParam, WGPUSwapChainId aSwapChainId) {
auto* parent = static_cast<WebGPUParent*>(aParam);
parent->DisableExternalTextureForSwapChain(aSwapChainId);
}
extern bool wgpu_server_ensure_external_texture_for_swap_chain(
void* aParam, WGPUSwapChainId aSwapChainId, WGPUDeviceId aDeviceId,
WGPUTextureId aTextureId, uint32_t aWidth, uint32_t aHeight,
struct WGPUTextureFormat aFormat, WGPUTextureUsages aUsage) {
auto* parent = static_cast<WebGPUParent*>(aParam);
return parent->EnsureExternalTextureForSwapChain(
aSwapChainId, aDeviceId, aTextureId, aWidth, aHeight, aFormat, aUsage);
}
extern void* wgpu_server_get_external_texture_handle(void* aParam,
WGPUTextureId aId) {
auto* parent = static_cast<WebGPUParent*>(aParam);
auto texture = parent->GetExternalTexture(aId);
if (!texture) {
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
return nullptr;
}
void* sharedHandle = nullptr;
#ifdef XP_WIN
sharedHandle = texture->GetExternalTextureHandle();
if (!sharedHandle) {
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
gfxCriticalNoteOnce << "Failed to get shared handle";
return nullptr;
}
#else
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
#endif
return sharedHandle;
}
extern int32_t wgpu_server_get_dma_buf_fd(void* aParam, WGPUTextureId aId) {
auto* parent = static_cast<WebGPUParent*>(aParam);
auto texture = parent->GetExternalTexture(aId);
if (!texture) {
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
return -1;
}
#ifdef MOZ_WIDGET_GTK
auto* textureDMABuf = texture->AsExternalTextureDMABuf();
if (!textureDMABuf) {
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
return -1;
}
auto fd = textureDMABuf->CloneDmaBufFd();
// fd should be closed by the caller.
return fd.release();
#else
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
return -1;
#endif
}
#if !defined(XP_MACOSX)
extern WGPUVkImageHandle* wgpu_server_get_vk_image_handle(void* aParam,
WGPUTextureId aId) {
auto* parent = static_cast<WebGPUParent*>(aParam);
auto texture = parent->GetExternalTexture(aId);
if (!texture) {
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
return nullptr;
}
# if defined(MOZ_WIDGET_GTK)
auto* textureDMABuf = texture->AsExternalTextureDMABuf();
if (!textureDMABuf) {
return nullptr;
}
return textureDMABuf->GetHandle();
# else
return nullptr;
# endif
}
#endif
extern uint32_t wgpu_server_get_external_io_surface_id(void* aParam,
WGPUTextureId aId) {
auto* parent = static_cast<WebGPUParent*>(aParam);
auto texture = parent->GetExternalTexture(aId);
if (!texture) {
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
return 0;
}
#if defined(XP_MACOSX)
auto* textureIOSurface = texture->AsExternalTextureMacIOSurface();
if (!textureIOSurface) {
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
return 0;
}
return textureIOSurface->GetIOSurfaceId();
#else
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
return 0;
#endif
}
} // namespace ffi
// A fixed-capacity buffer for receiving textual error messages from
// `wgpu_bindings`.
//
// The `ToFFI` method returns an `ffi::WGPUErrorBuffer` pointing to our
// buffer, for you to pass to fallible FFI-visible `wgpu_bindings`
// functions. These indicate failure by storing an error message in the
// buffer, which you can retrieve by calling `GetError`.
//
// If you call `ToFFI` on this type, you must also call `GetError` to check for
// an error. Otherwise, the destructor asserts.
//
// TODO: refactor this to avoid stack-allocating the buffer all the time.
class ErrorBuffer {
// if the message doesn't fit, it will be truncated
static constexpr unsigned BUFFER_SIZE = 512;
ffi::WGPUErrorBufferType mType = ffi::WGPUErrorBufferType_None;
char mMessageUtf8[BUFFER_SIZE] = {};
bool mAwaitingGetError = false;
public:
ErrorBuffer() { mMessageUtf8[0] = 0; }
ErrorBuffer(const ErrorBuffer&) = delete;
~ErrorBuffer() { MOZ_ASSERT(!mAwaitingGetError); }
ffi::WGPUErrorBuffer ToFFI() {
mAwaitingGetError = true;
ffi::WGPUErrorBuffer errorBuf = {&mType, mMessageUtf8, BUFFER_SIZE};
return errorBuf;
}
ffi::WGPUErrorBufferType GetType() { return mType; }
static Maybe<dom::GPUErrorFilter> ErrorTypeToFilterType(
ffi::WGPUErrorBufferType aType) {
switch (aType) {
case ffi::WGPUErrorBufferType_None:
case ffi::WGPUErrorBufferType_DeviceLost:
return {};
case ffi::WGPUErrorBufferType_Internal:
return Some(dom::GPUErrorFilter::Internal);
case ffi::WGPUErrorBufferType_Validation:
return Some(dom::GPUErrorFilter::Validation);
case ffi::WGPUErrorBufferType_OutOfMemory:
return Some(dom::GPUErrorFilter::Out_of_memory);
case ffi::WGPUErrorBufferType_Sentinel:
break;
}
MOZ_CRASH("invalid `ErrorBufferType`");
}
struct Error {
dom::GPUErrorFilter type;
bool isDeviceLost;
nsCString message;
};
// Retrieve the error message was stored in this buffer. Asserts that
// this instance actually contains an error (viz., that `GetType() !=
// ffi::WGPUErrorBufferType_None`).
//
// Mark this `ErrorBuffer` as having been handled, so its destructor
// won't assert.
Maybe<Error> GetError() {
mAwaitingGetError = false;
if (mType == ffi::WGPUErrorBufferType_DeviceLost) {
// This error is for a lost device, so we return an Error struct
// with the isDeviceLost bool set to true. It doesn't matter what
// GPUErrorFilter type we use, so we just use Validation. The error
// will not be reported.
return Some(Error{dom::GPUErrorFilter::Validation, true,
nsCString{mMessageUtf8}});
}
auto filterType = ErrorTypeToFilterType(mType);
if (!filterType) {
return {};
}
return Some(Error{*filterType, false, nsCString{mMessageUtf8}});
}
void CoerceValidationToInternal() {
if (mType == ffi::WGPUErrorBufferType_Validation) {
mType = ffi::WGPUErrorBufferType_Internal;
}
}
};
struct PendingSwapChainDrop {
layers::RemoteTextureTxnType mTxnType;
layers::RemoteTextureTxnId mTxnId;
};
class PresentationData {
NS_INLINE_DECL_REFCOUNTING(PresentationData);
public:
WeakPtr<WebGPUParent> mParent;
bool mUseExternalTextureInSwapChain;
const RawId mDeviceId;
const RawId mQueueId;
const layers::RGBDescriptor mDesc;
uint64_t mSubmissionIndex = 0;
std::deque<std::shared_ptr<ExternalTexture>> mRecycledExternalTextures;
std::unordered_set<layers::RemoteTextureId, layers::RemoteTextureId::HashFn>
mWaitingReadbackTexturesForPresent;
Maybe<PendingSwapChainDrop> mPendingSwapChainDrop;
const uint32_t mSourcePitch;
std::vector<RawId> mUnassignedBufferIds;
std::vector<RawId> mAvailableBufferIds;
std::vector<RawId> mQueuedBufferIds;
PresentationData(WebGPUParent* aParent, bool aUseExternalTextureInSwapChain,
RawId aDeviceId, RawId aQueueId,
const layers::RGBDescriptor& aDesc, uint32_t aSourcePitch,
const nsTArray<RawId>& aBufferIds)
: mParent(aParent),
mUseExternalTextureInSwapChain(aUseExternalTextureInSwapChain),
mDeviceId(aDeviceId),
mQueueId(aQueueId),
mDesc(aDesc),
mSourcePitch(aSourcePitch) {
MOZ_COUNT_CTOR(PresentationData);
for (const RawId id : aBufferIds) {
mUnassignedBufferIds.push_back(id);
}
}
private:
~PresentationData() { MOZ_COUNT_DTOR(PresentationData); }
};
WebGPUParent::WebGPUParent() : mContext(ffi::wgpu_server_new(this)) {
mTimer.Start(base::TimeDelta::FromMilliseconds(POLL_TIME_MS), this,
&WebGPUParent::MaintainDevices);
}
WebGPUParent::~WebGPUParent() {
// All devices should have been dropped, but maybe they weren't. To
// ensure we don't leak memory, clear the mDeviceLostRequests.
MOZ_ASSERT(mDeviceLostRequests.empty(),
"All device lost callbacks should have been called by now.");
mDeviceLostRequests.clear();
}
void WebGPUParent::MaintainDevices() {
ffi::wgpu_server_poll_all_devices(mContext.get(), false);
}
void WebGPUParent::LoseDevice(const RawId aDeviceId, Maybe<uint8_t> aReason,
const nsACString& aMessage) {
// Check to see if we've already sent a DeviceLost message to aDeviceId.
if (mLostDeviceIds.Contains(aDeviceId)) {
return;
}
// If the connection has been dropped, there is nobody to receive
// the DeviceLost message anyway.
if (!CanSend()) {
return;
}
if (!SendDeviceLost(aDeviceId, aReason, aMessage)) {
NS_ERROR("SendDeviceLost failed");
return;
}
mLostDeviceIds.Insert(aDeviceId);
}
bool WebGPUParent::ForwardError(const Maybe<RawId> aDeviceId,
ErrorBuffer& aError) {
if (auto error = aError.GetError()) {
// If this is a error has isDeviceLost true, then instead of reporting
// the error, we swallow it and call LoseDevice if we have an
// aDeviceID. This is to comply with the spec declaration in
// "No errors are generated after device loss."
if (error->isDeviceLost) {
if (aDeviceId.isSome()) {
LoseDevice(*aDeviceId, Nothing(), error->message);
}
return false;
}
ReportError(aDeviceId, error->type, error->message);
return true;
}
return false;
}
// Generate an error on the Device timeline of aDeviceId.
// aMessage is interpreted as UTF-8.
void WebGPUParent::ReportError(const Maybe<RawId> aDeviceId,
const GPUErrorFilter aType,
const nsCString& aMessage) {
// find the appropriate error scope
if (aDeviceId) {
const auto& itr = mErrorScopeStackByDevice.find(*aDeviceId);
if (itr != mErrorScopeStackByDevice.end()) {
auto& stack = itr->second;
for (auto& scope : Reversed(stack)) {
if (scope.filter != aType) {
continue;
}
if (!scope.firstMessage) {
scope.firstMessage = Some(aMessage);
}
return;
}
}
}
// No error scope found, so fall back to the uncaptured error handler
if (!SendUncapturedError(aDeviceId, aMessage)) {
NS_ERROR("SendDeviceUncapturedError failed");
}
}
ipc::IPCResult WebGPUParent::RecvInstanceRequestAdapter(
const dom::GPURequestAdapterOptions& aOptions, RawId aAdapterId,
InstanceRequestAdapterResolver&& resolver) {
ffi::WGPURequestAdapterOptions options = {};
if (aOptions.mPowerPreference.WasPassed()) {
options.power_preference = static_cast<ffi::WGPUPowerPreference>(
aOptions.mPowerPreference.Value());
} else {
options.power_preference = ffi::WGPUPowerPreference_LowPower;
}
options.force_fallback_adapter = aOptions.mForceFallbackAdapter;
auto luid = GetCompositorDeviceLuid();
ErrorBuffer error;
bool success = ffi::wgpu_server_instance_request_adapter(
mContext.get(), &options, aAdapterId, luid.ptrOr(nullptr), error.ToFFI());
ByteBuf infoByteBuf;
// Rust side expects an `Option`, so 0 maps to `None`.
uint64_t adapterId = 0;
if (success) {
adapterId = aAdapterId;
}
ffi::wgpu_server_adapter_pack_info(mContext.get(), adapterId,
ToFFI(&infoByteBuf));
resolver(std::move(infoByteBuf));
ForwardError(0, error);
// free the unused IDs
ipc::ByteBuf dropByteBuf;
if (!success) {
wgpu_server_adapter_free(aAdapterId, ToFFI(&dropByteBuf));
}
if (dropByteBuf.mData && !SendDropAction(std::move(dropByteBuf))) {
NS_ERROR("Unable to free free unused adapter IDs");
}
return IPC_OK();
}
/* static */ void WebGPUParent::DeviceLostCallback(uint8_t* aUserData,
uint8_t aReason,
const char* aMessage) {
DeviceLostRequest* req = reinterpret_cast<DeviceLostRequest*>(aUserData);
if (!req->mParent) {
// Parent is dead, never mind.
return;
}
RawId deviceId = req->mDeviceId;
// If aReason is 0, that corresponds to the unknown reason, which we
// treat as a Nothing() value. aReason of 1 corresponds to destroyed.
// Any other value is an unreportable outcome that wgpu sends for us to
// keep our data straight for the lost callback. We don't report those
// values.
if (aReason <= 1) {
Maybe<uint8_t> reason; // default to GPUDeviceLostReason::unknown
if (aReason == 1) {
reason = Some(uint8_t(0)); // this is GPUDeviceLostReason::destroyed
}
nsAutoCString message(aMessage);
req->mParent->LoseDevice(deviceId, reason, message);
}
auto it = req->mParent->mDeviceFenceHandles.find(deviceId);
if (it != req->mParent->mDeviceFenceHandles.end()) {
req->mParent->mDeviceFenceHandles.erase(it);
}
// We're no longer tracking the memory for this callback, so erase
// it to ensure we don't leak memory.
req->mParent->mDeviceLostRequests.erase(deviceId);
}
ipc::IPCResult WebGPUParent::RecvAdapterRequestDevice(
RawId aAdapterId, const ipc::ByteBuf& aByteBuf, RawId aDeviceId,
RawId aQueueId, AdapterRequestDeviceResolver&& resolver) {
ErrorBuffer error;
ffi::wgpu_server_adapter_request_device(mContext.get(), aAdapterId,
ToFFI(&aByteBuf), aDeviceId, aQueueId,
error.ToFFI());
if (ForwardError(0, error)) {
uint8_t reasonDestroyed = 0; // GPUDeviceLostReason::Destroyed
auto maybeError = error.GetError();
MOZ_ASSERT(maybeError.isSome());
LoseDevice(aDeviceId, Some(reasonDestroyed), maybeError->message);
resolver(false);
return IPC_OK();
}
mErrorScopeStackByDevice.insert({aDeviceId, {}});
// Setup the device lost callback.
std::unique_ptr<DeviceLostRequest> req(
new DeviceLostRequest{this, aDeviceId});
auto iter = mDeviceLostRequests.insert({aDeviceId, std::move(req)});
MOZ_ASSERT(iter.second, "Should be able to insert DeviceLostRequest.");
auto record = iter.first;
DeviceLostRequest* req_shadow = (record->second).get();
ffi::WGPUDeviceLostClosureC callback = {
&DeviceLostCallback, reinterpret_cast<uint8_t*>(req_shadow)};
ffi::wgpu_server_set_device_lost_callback(mContext.get(), aDeviceId,
callback);
resolver(true);
#if defined(XP_WIN)
HANDLE handle =
wgpu_server_get_device_fence_handle(mContext.get(), aDeviceId);
if (handle) {
RefPtr<gfx::FileHandleWrapper> fenceHandle =
new gfx::FileHandleWrapper(UniqueFileHandle(handle));
mDeviceFenceHandles.emplace(aDeviceId, std::move(fenceHandle));
}
#endif
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvAdapterDrop(RawId aAdapterId) {
ffi::wgpu_server_adapter_drop(mContext.get(), aAdapterId);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvDeviceDestroy(RawId aDeviceId) {
ffi::wgpu_server_device_destroy(mContext.get(), aDeviceId);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvDeviceDrop(RawId aDeviceId) {
ffi::wgpu_server_unregister_device_lost_callback(mContext.get(), aDeviceId);
mDeviceLostRequests.erase(aDeviceId);
ffi::wgpu_server_device_drop(mContext.get(), aDeviceId);
mErrorScopeStackByDevice.erase(aDeviceId);
mLostDeviceIds.Remove(aDeviceId);
return IPC_OK();
}
WebGPUParent::BufferMapData* WebGPUParent::GetBufferMapData(RawId aBufferId) {
const auto iter = mSharedMemoryMap.find(aBufferId);
if (iter == mSharedMemoryMap.end()) {
return nullptr;
}
return &iter->second;
}
ipc::IPCResult WebGPUParent::RecvDeviceCreateBuffer(
RawId aDeviceId, RawId aBufferId, dom::GPUBufferDescriptor&& aDesc,
ipc::UnsafeSharedMemoryHandle&& aShmem) {
webgpu::StringHelper label(aDesc.mLabel);
auto shmem =
ipc::WritableSharedMemoryMapping::Open(std::move(aShmem)).value();
bool hasMapFlags = aDesc.mUsage & (dom::GPUBufferUsage_Binding::MAP_WRITE |
dom::GPUBufferUsage_Binding::MAP_READ);
bool shmAllocationFailed = false;
if (hasMapFlags || aDesc.mMappedAtCreation) {
if (shmem.Size() < aDesc.mSize) {
MOZ_RELEASE_ASSERT(shmem.Size() == 0);
// If we requested a non-zero mappable buffer and get a size of zero, it
// indicates that the shmem allocation failed on the client side.
shmAllocationFailed = true;
} else {
uint64_t offset = 0;
uint64_t size = 0;
if (aDesc.mMappedAtCreation) {
size = aDesc.mSize;
}
BufferMapData data = {std::move(shmem), hasMapFlags, offset, size,
aDeviceId};
mSharedMemoryMap.insert({aBufferId, std::move(data)});
}
}
ErrorBuffer error;
ffi::wgpu_server_device_create_buffer(mContext.get(), aDeviceId, aBufferId,
label.Get(), aDesc.mSize, aDesc.mUsage,
aDesc.mMappedAtCreation,
shmAllocationFailed, error.ToFFI());
ForwardError(aDeviceId, error);
return IPC_OK();
}
struct MapRequest {
RefPtr<WebGPUParent> mParent;
ffi::WGPUGlobal* mContext;
ffi::WGPUBufferId mBufferId;
ffi::WGPUHostMap mHostMap;
uint64_t mOffset;
uint64_t mSize;
WebGPUParent::BufferMapResolver mResolver;
};
static const char* MapStatusString(ffi::WGPUBufferMapAsyncStatus status) {
switch (status) {
case ffi::WGPUBufferMapAsyncStatus_Success:
return "Success";
case ffi::WGPUBufferMapAsyncStatus_AlreadyMapped:
return "Already mapped";
case ffi::WGPUBufferMapAsyncStatus_MapAlreadyPending:
return "Map is already pending";
case ffi::WGPUBufferMapAsyncStatus_ContextLost:
return "Context lost";
case ffi::WGPUBufferMapAsyncStatus_Invalid:
return "Invalid buffer";
case ffi::WGPUBufferMapAsyncStatus_InvalidRange:
return "Invalid range";
case ffi::WGPUBufferMapAsyncStatus_InvalidAlignment:
return "Invalid alignment";
case ffi::WGPUBufferMapAsyncStatus_InvalidUsageFlags:
return "Invalid usage flags";
case ffi::WGPUBufferMapAsyncStatus_Error:
return "Map failed";
case ffi::WGPUBufferMapAsyncStatus_Sentinel: // For -Wswitch
break;
}
MOZ_CRASH("Bad ffi::WGPUBufferMapAsyncStatus");
}
void WebGPUParent::MapCallback(ffi::WGPUBufferMapAsyncStatus aStatus,
uint8_t* aUserData) {
auto* req = reinterpret_cast<MapRequest*>(aUserData);
if (!req->mParent->CanSend()) {
delete req;
return;
}
BufferMapResult result;
auto bufferId = req->mBufferId;
auto* mapData = req->mParent->GetBufferMapData(bufferId);
MOZ_RELEASE_ASSERT(mapData);
if (aStatus != ffi::WGPUBufferMapAsyncStatus_Success) {
// A buffer map operation that fails with a DeviceError gets
// mapped to the ContextLost status. If we have this status, we
// need to lose the device.
if (aStatus == ffi::WGPUBufferMapAsyncStatus_ContextLost) {
req->mParent->LoseDevice(
mapData->mDeviceId, Nothing(),
nsPrintfCString("Buffer %" PRIu64 " invalid", bufferId));
}
result = BufferMapError(nsPrintfCString("Mapping WebGPU buffer failed: %s",
MapStatusString(aStatus)));
} else {
auto size = req->mSize;
auto offset = req->mOffset;
if (req->mHostMap == ffi::WGPUHostMap_Read && size > 0) {
ErrorBuffer error;
const auto src = ffi::wgpu_server_buffer_get_mapped_range(
req->mContext, req->mBufferId, offset, size, error.ToFFI());
MOZ_RELEASE_ASSERT(!error.GetError());
MOZ_RELEASE_ASSERT(mapData->mShmem.Size() >= offset + size);
if (src.ptr != nullptr && src.length >= size) {
auto dst = mapData->mShmem.Bytes().Subspan(offset, size);
memcpy(dst.data(), src.ptr, size);
}
}
result =
BufferMapSuccess(offset, size, req->mHostMap == ffi::WGPUHostMap_Write);
mapData->mMappedOffset = offset;
mapData->mMappedSize = size;
}
req->mResolver(result);
delete req;
}
ipc::IPCResult WebGPUParent::RecvBufferMap(RawId aDeviceId, RawId aBufferId,
uint32_t aMode, uint64_t aOffset,
uint64_t aSize,
BufferMapResolver&& aResolver) {
MOZ_LOG(sLogger, LogLevel::Info,
("RecvBufferMap %" PRIu64 " offset=%" PRIu64 " size=%" PRIu64 "\n",
aBufferId, aOffset, aSize));
ffi::WGPUHostMap mode;
switch (aMode) {
case dom::GPUMapMode_Binding::READ:
mode = ffi::WGPUHostMap_Read;
break;
case dom::GPUMapMode_Binding::WRITE:
mode = ffi::WGPUHostMap_Write;
break;
default: {
nsCString errorString(
"GPUBuffer.mapAsync 'mode' argument must be either GPUMapMode.READ "
"or GPUMapMode.WRITE");
aResolver(BufferMapError(errorString));
return IPC_OK();
}
}
auto* mapData = GetBufferMapData(aBufferId);
if (!mapData) {
nsCString errorString("Buffer is not mappable");
aResolver(BufferMapError(errorString));
return IPC_OK();
}
auto* request =
new MapRequest{this, mContext.get(), aBufferId, mode,
aOffset, aSize, std::move(aResolver)};
ffi::WGPUBufferMapCallbackC callback = {&MapCallback,
reinterpret_cast<uint8_t*>(request)};
ErrorBuffer mapError;
ffi::wgpu_server_buffer_map(mContext.get(), aBufferId, aOffset, aSize, mode,
callback, mapError.ToFFI());
ForwardError(aDeviceId, mapError);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvBufferUnmap(RawId aDeviceId, RawId aBufferId,
bool aFlush) {
MOZ_LOG(sLogger, LogLevel::Info,
("RecvBufferUnmap %" PRIu64 " flush=%d\n", aBufferId, aFlush));
auto* mapData = GetBufferMapData(aBufferId);
if (mapData && aFlush) {
uint64_t offset = mapData->mMappedOffset;
uint64_t size = mapData->mMappedSize;
ErrorBuffer getRangeError;
const auto mapped = ffi::wgpu_server_buffer_get_mapped_range(
mContext.get(), aBufferId, offset, size, getRangeError.ToFFI());
ForwardError(aDeviceId, getRangeError);
if (mapped.ptr != nullptr && mapped.length >= size) {
auto shmSize = mapData->mShmem.Size();
MOZ_RELEASE_ASSERT(offset <= shmSize);
MOZ_RELEASE_ASSERT(size <= shmSize - offset);
auto src = mapData->mShmem.Bytes().Subspan(offset, size);
memcpy(mapped.ptr, src.data(), size);
}
mapData->mMappedOffset = 0;
mapData->mMappedSize = 0;
}
ErrorBuffer unmapError;
ffi::wgpu_server_buffer_unmap(mContext.get(), aBufferId, unmapError.ToFFI());
ForwardError(aDeviceId, unmapError);
if (mapData && !mapData->mHasMapFlags) {
// We get here if the buffer was mapped at creation without map flags.
// We don't need the shared memory anymore.
DeallocBufferShmem(aBufferId);
}
return IPC_OK();
}
void WebGPUParent::DeallocBufferShmem(RawId aBufferId) {
const auto iter = mSharedMemoryMap.find(aBufferId);
if (iter != mSharedMemoryMap.end()) {
mSharedMemoryMap.erase(iter);
}
}
ipc::IPCResult WebGPUParent::RecvBufferDrop(RawId aBufferId) {
ffi::wgpu_server_buffer_drop(mContext.get(), aBufferId);
MOZ_LOG(sLogger, LogLevel::Info, ("RecvBufferDrop %" PRIu64 "\n", aBufferId));
DeallocBufferShmem(aBufferId);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvBufferDestroy(RawId aBufferId) {
ffi::wgpu_server_buffer_destroy(mContext.get(), aBufferId);
MOZ_LOG(sLogger, LogLevel::Info,
("RecvBufferDestroy %" PRIu64 "\n", aBufferId));
DeallocBufferShmem(aBufferId);
return IPC_OK();
}
void WebGPUParent::RemoveExternalTexture(RawId aTextureId) {
auto it = mExternalTextures.find(aTextureId);
if (it != mExternalTextures.end()) {
mExternalTextures.erase(it);
}
}
ipc::IPCResult WebGPUParent::RecvTextureDestroy(RawId aTextureId,
RawId aDeviceId) {
ffi::wgpu_server_texture_destroy(mContext.get(), aTextureId);
RemoveExternalTexture(aTextureId);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvTextureDrop(RawId aTextureId) {
ffi::wgpu_server_texture_drop(mContext.get(), aTextureId);
RemoveExternalTexture(aTextureId);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvTextureViewDrop(RawId aTextureViewId) {
ffi::wgpu_server_texture_view_drop(mContext.get(), aTextureViewId);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvSamplerDrop(RawId aSamplerId) {
ffi::wgpu_server_sampler_drop(mContext.get(), aSamplerId);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvQuerySetDrop(RawId aQuerySetId) {
ffi::wgpu_server_query_set_drop(mContext.get(), aQuerySetId);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvCommandEncoderFinish(
RawId aEncoderId, RawId aDeviceId,
const dom::GPUCommandBufferDescriptor& aDesc) {
Unused << aDesc;
ffi::WGPUCommandBufferDescriptor desc = {};
webgpu::StringHelper label(aDesc.mLabel);
desc.label = label.Get();
ErrorBuffer error;
ffi::wgpu_server_encoder_finish(mContext.get(), aEncoderId, &desc,
error.ToFFI());
ForwardError(aDeviceId, error);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvCommandEncoderDrop(RawId aEncoderId) {
ffi::wgpu_server_encoder_drop(mContext.get(), aEncoderId);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvRenderBundleDrop(RawId aBundleId) {
ffi::wgpu_server_render_bundle_drop(mContext.get(), aBundleId);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvQueueSubmit(
RawId aQueueId, RawId aDeviceId, const nsTArray<RawId>& aCommandBuffers,
const nsTArray<RawId>& aTextureIds) {
ErrorBuffer error;
auto index = ffi::wgpu_server_queue_submit(
mContext.get(), aQueueId, aCommandBuffers.Elements(),
aCommandBuffers.Length(), error.ToFFI());
// Check if index is valid. 0 means error.
if (index != 0) {
for (const auto& textureId : aTextureIds) {
auto it = mExternalTextures.find(textureId);
if (it != mExternalTextures.end()) {
auto& externalTexture = it->second;
externalTexture->SetSubmissionIndex(index);
}
}
}
ForwardError(aDeviceId, error);
return IPC_OK();
}
struct OnSubmittedWorkDoneRequest {
RefPtr<WebGPUParent> mParent;
WebGPUParent::QueueOnSubmittedWorkDoneResolver mResolver;
};
void OnSubmittedWorkDoneCallback(uint8_t* userdata) {
auto req = std::unique_ptr<OnSubmittedWorkDoneRequest>(
reinterpret_cast<OnSubmittedWorkDoneRequest*>(userdata));
if (req->mParent->CanSend()) {
req->mResolver(void_t());
}
}
ipc::IPCResult WebGPUParent::RecvQueueOnSubmittedWorkDone(
RawId aQueueId, std::function<void(mozilla::void_t)>&& aResolver) {
std::unique_ptr<OnSubmittedWorkDoneRequest> request(
new OnSubmittedWorkDoneRequest{this, std::move(aResolver)});
ffi::WGPUSubmittedWorkDoneClosureC callback = {
&OnSubmittedWorkDoneCallback,
reinterpret_cast<uint8_t*>(request.release())};
ffi::wgpu_server_on_submitted_work_done(mContext.get(), aQueueId, callback);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvQueueWriteAction(
RawId aQueueId, RawId aDeviceId, const ipc::ByteBuf& aByteBuf,
ipc::UnsafeSharedMemoryHandle&& aShmem) {
auto mapping =
ipc::WritableSharedMemoryMapping::Open(std::move(aShmem)).value();
ErrorBuffer error;
ffi::wgpu_server_queue_write_action(mContext.get(), aQueueId,
ToFFI(&aByteBuf), mapping.Bytes().data(),
mapping.Size(), error.ToFFI());
ForwardError(aDeviceId, error);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvBindGroupLayoutDrop(RawId aBindGroupLayoutId) {
ffi::wgpu_server_bind_group_layout_drop(mContext.get(), aBindGroupLayoutId);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvPipelineLayoutDrop(RawId aPipelineLayoutId) {
ffi::wgpu_server_pipeline_layout_drop(mContext.get(), aPipelineLayoutId);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvBindGroupDrop(RawId aBindGroupId) {
ffi::wgpu_server_bind_group_drop(mContext.get(), aBindGroupId);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvShaderModuleDrop(RawId aModuleId) {
ffi::wgpu_server_shader_module_drop(mContext.get(), aModuleId);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvComputePipelineDrop(RawId aPipelineId) {
ffi::wgpu_server_compute_pipeline_drop(mContext.get(), aPipelineId);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvRenderPipelineDrop(RawId aPipelineId) {
ffi::wgpu_server_render_pipeline_drop(mContext.get(), aPipelineId);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvImplicitLayoutDrop(
RawId aImplicitPlId, const nsTArray<RawId>& aImplicitBglIds) {
ffi::wgpu_server_pipeline_layout_drop(mContext.get(), aImplicitPlId);
for (const auto& id : aImplicitBglIds) {
ffi::wgpu_server_bind_group_layout_drop(mContext.get(), id);
}
return IPC_OK();
}
// TODO: proper destruction
ipc::IPCResult WebGPUParent::RecvDeviceCreateSwapChain(
RawId aDeviceId, RawId aQueueId, const RGBDescriptor& aDesc,
const nsTArray<RawId>& aBufferIds,
const layers::RemoteTextureOwnerId& aOwnerId,
bool aUseExternalTextureInSwapChain) {
switch (aDesc.format()) {
case gfx::SurfaceFormat::R8G8B8A8:
case gfx::SurfaceFormat::B8G8R8A8:
break;
default:
MOZ_ASSERT_UNREACHABLE("Invalid surface format!");
return IPC_OK();
}
const auto bufferStrideWithMask =
Device::BufferStrideWithMask(aDesc.size(), aDesc.format());
if (!bufferStrideWithMask.isValid()) {
MOZ_ASSERT_UNREACHABLE("Invalid width / buffer stride!");
return IPC_OK();
}
constexpr uint32_t kBufferAlignmentMask = 0xff;
const uint32_t bufferStride =
bufferStrideWithMask.value() & ~kBufferAlignmentMask;
const auto rows = CheckedInt<uint32_t>(aDesc.size().height);
if (!rows.isValid()) {
MOZ_ASSERT_UNREACHABLE("Invalid height!");
return IPC_OK();
}
if (!mRemoteTextureOwner) {
mRemoteTextureOwner =
MakeRefPtr<layers::RemoteTextureOwnerClient>(OtherPid());
}
mRemoteTextureOwner->RegisterTextureOwner(aOwnerId);
auto data = MakeRefPtr<PresentationData>(this, aUseExternalTextureInSwapChain,
aDeviceId, aQueueId, aDesc,
bufferStride, aBufferIds);
if (!mPresentationDataMap.emplace(aOwnerId, data).second) {
NS_ERROR("External image is already registered as WebGPU canvas!");
}
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvDeviceCreateShaderModule(
RawId aDeviceId, RawId aModuleId, const nsString& aLabel,
const nsCString& aCode, DeviceCreateShaderModuleResolver&& aOutMessage) {
// TODO: this should probably be an optional label in the IPC message.
const nsACString* label = nullptr;
NS_ConvertUTF16toUTF8 utf8Label(aLabel);
if (!utf8Label.IsEmpty()) {
label = &utf8Label;
}
ffi::WGPUShaderModuleCompilationMessage message;
ErrorBuffer error;
bool ok = ffi::wgpu_server_device_create_shader_module(
mContext.get(), aDeviceId, aModuleId, label, &aCode, &message,
error.ToFFI());
ForwardError(aDeviceId, error);
nsTArray<WebGPUCompilationMessage> messages;
if (!ok) {
WebGPUCompilationMessage msg;
msg.lineNum = message.line_number;
msg.linePos = message.line_pos;
msg.offset = message.utf16_offset;
msg.length = message.utf16_length;
msg.message = message.message;
// wgpu currently only returns errors.
msg.messageType = WebGPUCompilationMessageType::Error;
messages.AppendElement(msg);
}
aOutMessage(messages);
return IPC_OK();
}
struct ReadbackPresentRequest {
ReadbackPresentRequest(
const ffi::WGPUGlobal* aContext, RefPtr<PresentationData>& aData,
RefPtr<layers::RemoteTextureOwnerClient>& aRemoteTextureOwner,
const layers::RemoteTextureId aTextureId,
const layers::RemoteTextureOwnerId aOwnerId)
: mContext(aContext),
mData(aData),
mRemoteTextureOwner(aRemoteTextureOwner),
mTextureId(aTextureId),
mOwnerId(aOwnerId) {}
const ffi::WGPUGlobal* mContext;
RefPtr<PresentationData> mData;
RefPtr<layers::RemoteTextureOwnerClient> mRemoteTextureOwner;
const layers::RemoteTextureId mTextureId;
const layers::RemoteTextureOwnerId mOwnerId;
};
static void ReadbackPresentCallback(ffi::WGPUBufferMapAsyncStatus status,
uint8_t* userdata) {
UniquePtr<ReadbackPresentRequest> req(
reinterpret_cast<ReadbackPresentRequest*>(userdata));
const auto onExit = mozilla::MakeScopeExit([&]() {
auto& waitingTextures = req->mData->mWaitingReadbackTexturesForPresent;
auto it = waitingTextures.find(req->mTextureId);
MOZ_ASSERT(it != waitingTextures.end());
if (it != waitingTextures.end()) {
waitingTextures.erase(it);
}
if (req->mData->mPendingSwapChainDrop.isSome() && waitingTextures.empty()) {
if (req->mData->mParent) {
auto& pendingDrop = req->mData->mPendingSwapChainDrop.ref();
req->mData->mParent->RecvSwapChainDrop(
req->mOwnerId, pendingDrop.mTxnType, pendingDrop.mTxnId);
req->mData->mPendingSwapChainDrop = Nothing();
}
}
});
if (!req->mRemoteTextureOwner->IsRegistered(req->mOwnerId)) {
// SwapChain is already Destroyed
return;
}
RefPtr<PresentationData> data = req->mData;
// get the buffer ID
RawId bufferId;
{
bufferId = data->mQueuedBufferIds.back();
data->mQueuedBufferIds.pop_back();
}
// Ensure we'll make the bufferId available for reuse
data->mAvailableBufferIds.push_back(bufferId);
MOZ_LOG(sLogger, LogLevel::Info,
("ReadbackPresentCallback for buffer %" PRIu64 " status=%d\n",
bufferId, status));
// copy the data
if (status == ffi::WGPUBufferMapAsyncStatus_Success) {
const auto bufferSize = data->mDesc.size().height * data->mSourcePitch;
ErrorBuffer getRangeError;
const auto mapped = ffi::wgpu_server_buffer_get_mapped_range(
req->mContext, bufferId, 0, bufferSize, getRangeError.ToFFI());
getRangeError.CoerceValidationToInternal();
if (req->mData->mParent) {
req->mData->mParent->ForwardError(data->mDeviceId, getRangeError);
}
if (auto innerError = getRangeError.GetError()) {
MOZ_LOG(sLogger, LogLevel::Info,
("WebGPU present: buffer get_mapped_range for internal "
"presentation readback failed: %s\n",
innerError->message.get()));
return;
}
MOZ_RELEASE_ASSERT(mapped.length >= bufferSize);
auto textureData =
req->mRemoteTextureOwner->CreateOrRecycleBufferTextureData(
data->mDesc.size(), data->mDesc.format(), req->mOwnerId);
if (!textureData) {
gfxCriticalNoteOnce << "Failed to allocate BufferTextureData";
return;
}
layers::MappedTextureData mappedData;
if (textureData && textureData->BorrowMappedData(mappedData)) {
uint8_t* src = mapped.ptr;
uint8_t* dst = mappedData.data;
for (auto row = 0; row < data->mDesc.size().height; ++row) {
memcpy(dst, src, mappedData.stride);
dst += mappedData.stride;
src += data->mSourcePitch;
}
req->mRemoteTextureOwner->PushTexture(req->mTextureId, req->mOwnerId,
std::move(textureData));
} else {
NS_WARNING("WebGPU present skipped: the swapchain is resized!");
}
ErrorBuffer unmapError;
wgpu_server_buffer_unmap(req->mContext, bufferId, unmapError.ToFFI());
unmapError.CoerceValidationToInternal();
if (req->mData->mParent) {
req->mData->mParent->ForwardError(data->mDeviceId, unmapError);
}
if (auto innerError = unmapError.GetError()) {
MOZ_LOG(sLogger, LogLevel::Info,
("WebGPU present: buffer unmap for internal presentation "
"readback failed: %s\n",
innerError->message.get()));
}
} else {
// TODO: better handle errors
NS_WARNING("WebGPU frame mapping failed!");
}
}
ipc::IPCResult WebGPUParent::GetFrontBufferSnapshot(
IProtocol* aProtocol, const layers::RemoteTextureOwnerId& aOwnerId,
Maybe<Shmem>& aShmem, gfx::IntSize& aSize) {
const auto& lookup = mPresentationDataMap.find(aOwnerId);
if (lookup == mPresentationDataMap.end() || !mRemoteTextureOwner ||
!mRemoteTextureOwner->IsRegistered(aOwnerId)) {
return IPC_OK();
}
RefPtr<PresentationData> data = lookup->second.get();
aSize = data->mDesc.size();
uint32_t stride = layers::ImageDataSerializer::ComputeRGBStride(
data->mDesc.format(), aSize.width);
uint32_t len = data->mDesc.size().height * stride;
Shmem shmem;
if (!AllocShmem(len, &shmem)) {
return IPC_OK();
}
mRemoteTextureOwner->GetLatestBufferSnapshot(aOwnerId, shmem, aSize);
aShmem.emplace(std::move(shmem));
return IPC_OK();
}
void WebGPUParent::PostExternalTexture(
const std::shared_ptr<ExternalTexture>&& aExternalTexture,
const layers::RemoteTextureId aRemoteTextureId,
const layers::RemoteTextureOwnerId aOwnerId) {
const auto& lookup = mPresentationDataMap.find(aOwnerId);
if (lookup == mPresentationDataMap.end() || !mRemoteTextureOwner ||
!mRemoteTextureOwner->IsRegistered(aOwnerId)) {
NS_WARNING("WebGPU presenting on a destroyed swap chain!");
return;
}
const auto surfaceFormat = gfx::SurfaceFormat::B8G8R8A8;
const auto size = aExternalTexture->GetSize();
const auto index = aExternalTexture->GetSubmissionIndex();
MOZ_ASSERT(index != 0);
RefPtr<PresentationData> data = lookup->second.get();
Maybe<gfx::FenceInfo> fenceInfo;
auto it = mDeviceFenceHandles.find(data->mDeviceId);
if (it != mDeviceFenceHandles.end()) {
fenceInfo = Some(gfx::FenceInfo(it->second, index));
}
Maybe<layers::SurfaceDescriptor> desc =
aExternalTexture->ToSurfaceDescriptor(fenceInfo);
if (!desc) {
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
return;
}
mRemoteTextureOwner->PushTexture(aRemoteTextureId, aOwnerId, aExternalTexture,
size, surfaceFormat, *desc);
auto recycledTexture = mRemoteTextureOwner->GetRecycledExternalTexture(
size, surfaceFormat, desc->type(), aOwnerId);
if (recycledTexture) {
data->mRecycledExternalTextures.push_back(recycledTexture);
}
}
ipc::IPCResult WebGPUParent::RecvSwapChainPresent(
RawId aTextureId, RawId aCommandEncoderId,
const layers::RemoteTextureId& aRemoteTextureId,
const layers::RemoteTextureOwnerId& aOwnerId) {
// step 0: get the data associated with the swapchain
const auto& lookup = mPresentationDataMap.find(aOwnerId);
if (lookup == mPresentationDataMap.end() || !mRemoteTextureOwner ||
!mRemoteTextureOwner->IsRegistered(aOwnerId)) {
NS_WARNING("WebGPU presenting on a destroyed swap chain!");
return IPC_OK();
}
RefPtr<PresentationData> data = lookup->second.get();
if (data->mUseExternalTextureInSwapChain) {
auto it = mExternalTextures.find(aTextureId);
if (it == mExternalTextures.end()) {
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
return IPC_OK();
}
std::shared_ptr<ExternalTexture> externalTexture = it->second;
mExternalTextures.erase(it);
PostExternalTexture(std::move(externalTexture), aRemoteTextureId, aOwnerId);
return IPC_OK();
}
RawId bufferId = 0;
const auto& size = data->mDesc.size();
const auto bufferSize = data->mDesc.size().height * data->mSourcePitch;
// step 1: find an available staging buffer, or create one
{
if (!data->mAvailableBufferIds.empty()) {
bufferId = data->mAvailableBufferIds.back();
data->mAvailableBufferIds.pop_back();
} else if (!data->mUnassignedBufferIds.empty()) {
bufferId = data->mUnassignedBufferIds.back();
data->mUnassignedBufferIds.pop_back();
ffi::WGPUBufferUsages usage =
WGPUBufferUsages_COPY_DST | WGPUBufferUsages_MAP_READ;
ErrorBuffer error;
ffi::wgpu_server_device_create_buffer(mContext.get(), data->mDeviceId,
bufferId, nullptr, bufferSize,
usage, false, false, error.ToFFI());
if (ForwardError(data->mDeviceId, error)) {
return IPC_OK();
}
} else {
bufferId = 0;
}
if (bufferId) {
data->mQueuedBufferIds.insert(data->mQueuedBufferIds.begin(), bufferId);
}
}
MOZ_LOG(sLogger, LogLevel::Info,
("RecvSwapChainPresent with buffer %" PRIu64 "\n", bufferId));
if (!bufferId) {
// TODO: add a warning - no buffer are available!
return IPC_OK();
}
// step 3: submit a copy command for the frame
ffi::WGPUCommandEncoderDescriptor encoderDesc = {};
{
ErrorBuffer error;
ffi::wgpu_server_device_create_encoder(mContext.get(), data->mDeviceId,
&encoderDesc, aCommandEncoderId,
error.ToFFI());
if (ForwardError(data->mDeviceId, error)) {
return IPC_OK();
}
}
const ffi::WGPUImageCopyTexture texView = {
aTextureId,
};
const ffi::WGPUImageDataLayout bufLayout = {
0,
&data->mSourcePitch,
nullptr,
};
const ffi::WGPUExtent3d extent = {
static_cast<uint32_t>(size.width),
static_cast<uint32_t>(size.height),
1,
};
{
ErrorBuffer error;
ffi::wgpu_server_encoder_copy_texture_to_buffer(
mContext.get(), aCommandEncoderId, &texView, bufferId, &bufLayout,
&extent, error.ToFFI());
if (ForwardError(data->mDeviceId, error)) {
return IPC_OK();
}
}
ffi::WGPUCommandBufferDescriptor commandDesc = {};
{
ErrorBuffer error;
ffi::wgpu_server_encoder_finish(mContext.get(), aCommandEncoderId,
&commandDesc, error.ToFFI());
if (ForwardError(data->mDeviceId, error)) {
return IPC_OK();
}
}
{
ErrorBuffer error;
ffi::wgpu_server_queue_submit(mContext.get(), data->mQueueId,
&aCommandEncoderId, 1, error.ToFFI());
if (ForwardError(data->mDeviceId, error)) {
return IPC_OK();
}
}
auto& waitingTextures = data->mWaitingReadbackTexturesForPresent;
auto it = waitingTextures.find(aRemoteTextureId);
MOZ_ASSERT(it == waitingTextures.end());
if (it == waitingTextures.end()) {
waitingTextures.emplace(aRemoteTextureId);
}
// step 4: request the pixels to be copied into the external texture
// TODO: this isn't strictly necessary. When WR wants to Lock() the external
// texture,
// we can just give it the contents of the last mapped buffer instead of the
// copy.
auto presentRequest = MakeUnique<ReadbackPresentRequest>(
mContext.get(), data, mRemoteTextureOwner, aRemoteTextureId, aOwnerId);
ffi::WGPUBufferMapCallbackC callback = {
&ReadbackPresentCallback,
reinterpret_cast<uint8_t*>(presentRequest.release())};
ErrorBuffer error;
ffi::wgpu_server_buffer_map(mContext.get(), bufferId, 0, bufferSize,
ffi::WGPUHostMap_Read, callback, error.ToFFI());
if (ForwardError(data->mDeviceId, error)) {
return IPC_OK();
}
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvSwapChainDrop(
const layers::RemoteTextureOwnerId& aOwnerId,
layers::RemoteTextureTxnType aTxnType, layers::RemoteTextureTxnId aTxnId) {
const auto& lookup = mPresentationDataMap.find(aOwnerId);
MOZ_ASSERT(lookup != mPresentationDataMap.end());
if (lookup == mPresentationDataMap.end()) {
NS_WARNING("WebGPU presenting on a destroyed swap chain!");
return IPC_OK();
}
RefPtr<PresentationData> data = lookup->second.get();
auto waitingCount = data->mWaitingReadbackTexturesForPresent.size();
if (waitingCount > 0) {
// Defer SwapChainDrop until readback complete
data->mPendingSwapChainDrop = Some(PendingSwapChainDrop{aTxnType, aTxnId});
return IPC_OK();
}
if (mRemoteTextureOwner) {
if (aTxnType && aTxnId) {
mRemoteTextureOwner->WaitForTxn(aOwnerId, aTxnType, aTxnId);
}
mRemoteTextureOwner->UnregisterTextureOwner(aOwnerId);
}
mPresentationDataMap.erase(lookup);
ipc::ByteBuf dropByteBuf;
for (const auto bid : data->mUnassignedBufferIds) {
wgpu_server_buffer_free(bid, ToFFI(&dropByteBuf));
}
if (dropByteBuf.mData && !SendDropAction(std::move(dropByteBuf))) {
NS_WARNING("Unable to free an ID for non-assigned buffer");
}
for (const auto bid : data->mAvailableBufferIds) {
ffi::wgpu_server_buffer_drop(mContext.get(), bid);
}
for (const auto bid : data->mQueuedBufferIds) {
ffi::wgpu_server_buffer_drop(mContext.get(), bid);
}
return IPC_OK();
}
void WebGPUParent::ActorDestroy(ActorDestroyReason aWhy) {
mTimer.Stop();
mPresentationDataMap.clear();
if (mRemoteTextureOwner) {
mRemoteTextureOwner->UnregisterAllTextureOwners();
mRemoteTextureOwner = nullptr;
}
ffi::wgpu_server_poll_all_devices(mContext.get(), true);
mContext = nullptr;
}
ipc::IPCResult WebGPUParent::RecvDeviceAction(RawId aDeviceId,
const ipc::ByteBuf& aByteBuf) {
ErrorBuffer error;
ffi::wgpu_server_device_action(mContext.get(), aDeviceId, ToFFI(&aByteBuf),
error.ToFFI());
ForwardError(aDeviceId, error);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvDeviceActionWithAck(
RawId aDeviceId, const ipc::ByteBuf& aByteBuf,
DeviceActionWithAckResolver&& aResolver) {
auto result = RecvDeviceAction(aDeviceId, aByteBuf);
aResolver(true);
return result;
}
ipc::IPCResult WebGPUParent::RecvTextureAction(RawId aTextureId,
RawId aDeviceId,
const ipc::ByteBuf& aByteBuf) {
ErrorBuffer error;
ffi::wgpu_server_texture_action(mContext.get(), aTextureId, ToFFI(&aByteBuf),
error.ToFFI());
ForwardError(aDeviceId, error);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvCommandEncoderAction(
RawId aEncoderId, RawId aDeviceId, const ipc::ByteBuf& aByteBuf) {
ErrorBuffer error;
ffi::wgpu_server_command_encoder_action(mContext.get(), aEncoderId,
ToFFI(&aByteBuf), error.ToFFI());
ForwardError(aDeviceId, error);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvRenderPass(RawId aEncoderId, RawId aDeviceId,
const ipc::ByteBuf& aByteBuf) {
ErrorBuffer error;
ffi::wgpu_server_render_pass(mContext.get(), aEncoderId, ToFFI(&aByteBuf),
error.ToFFI());
ForwardError(aDeviceId, error);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvComputePass(RawId aEncoderId, RawId aDeviceId,
const ipc::ByteBuf& aByteBuf) {
ErrorBuffer error;
ffi::wgpu_server_compute_pass(mContext.get(), aEncoderId, ToFFI(&aByteBuf),
error.ToFFI());
ForwardError(aDeviceId, error);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvBumpImplicitBindGroupLayout(RawId aPipelineId,
bool aIsCompute,
uint32_t aIndex,
RawId aAssignId) {
ErrorBuffer error;
if (aIsCompute) {
ffi::wgpu_server_compute_pipeline_get_bind_group_layout(
mContext.get(), aPipelineId, aIndex, aAssignId, error.ToFFI());
} else {
ffi::wgpu_server_render_pipeline_get_bind_group_layout(
mContext.get(), aPipelineId, aIndex, aAssignId, error.ToFFI());
}
ForwardError(0, error);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvDevicePushErrorScope(
RawId aDeviceId, const dom::GPUErrorFilter aFilter) {
const auto& itr = mErrorScopeStackByDevice.find(aDeviceId);
if (itr == mErrorScopeStackByDevice.end()) {
// Content can cause this simply by destroying a device and then
// calling `pushErrorScope`.
return IPC_OK();
}
auto& stack = itr->second;
// Let's prevent `while (true) { pushErrorScope(); }`.
constexpr size_t MAX_ERROR_SCOPE_STACK_SIZE = 1'000'000;
if (stack.size() >= MAX_ERROR_SCOPE_STACK_SIZE) {
nsPrintfCString m("pushErrorScope: Hit MAX_ERROR_SCOPE_STACK_SIZE of %zu",
MAX_ERROR_SCOPE_STACK_SIZE);
ReportError(Some(aDeviceId), dom::GPUErrorFilter::Out_of_memory, m);
return IPC_OK();
}
const auto newScope = ErrorScope{aFilter};
stack.push_back(newScope);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvDevicePopErrorScope(
RawId aDeviceId, DevicePopErrorScopeResolver&& aResolver) {
const auto popResult = [&]() {
const auto& itr = mErrorScopeStackByDevice.find(aDeviceId);
if (itr == mErrorScopeStackByDevice.end()) {
// Content can cause this simply by destroying a device and then
// calling `popErrorScope`.
return PopErrorScopeResult{PopErrorScopeResultType::DeviceLost};
}
auto& stack = itr->second;
if (!stack.size()) {
// Content can cause this simply by calling `popErrorScope` when
// there is no error scope pushed.
return PopErrorScopeResult{PopErrorScopeResultType::ThrowOperationError,
"popErrorScope on empty stack"_ns};
}
const auto& scope = stack.back();
const auto popLater = MakeScopeExit([&]() { stack.pop_back(); });
auto ret = PopErrorScopeResult{PopErrorScopeResultType::NoError};
if (scope.firstMessage) {
ret.message = *scope.firstMessage;
switch (scope.filter) {
case dom::GPUErrorFilter::Validation:
ret.resultType = PopErrorScopeResultType::ValidationError;
break;
case dom::GPUErrorFilter::Out_of_memory:
ret.resultType = PopErrorScopeResultType::OutOfMemory;
break;
case dom::GPUErrorFilter::Internal:
ret.resultType = PopErrorScopeResultType::InternalError;
break;
}
}
return ret;
}();
aResolver(popResult);
return IPC_OK();
}
ipc::IPCResult WebGPUParent::RecvGenerateError(const Maybe<RawId> aDeviceId,
const dom::GPUErrorFilter aType,
const nsCString& aMessage) {
ReportError(aDeviceId, aType, aMessage);
return IPC_OK();
}
bool WebGPUParent::UseExternalTextureForSwapChain(
ffi::WGPUSwapChainId aSwapChainId) {
auto ownerId = layers::RemoteTextureOwnerId{aSwapChainId._0};
const auto& lookup = mPresentationDataMap.find(ownerId);
if (lookup == mPresentationDataMap.end()) {
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
return false;
}
RefPtr<PresentationData> data = lookup->second.get();
return data->mUseExternalTextureInSwapChain;
}
void WebGPUParent::DisableExternalTextureForSwapChain(
ffi::WGPUSwapChainId aSwapChainId) {
auto ownerId = layers::RemoteTextureOwnerId{aSwapChainId._0};
const auto& lookup = mPresentationDataMap.find(ownerId);
if (lookup == mPresentationDataMap.end()) {
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
return;
}
RefPtr<PresentationData> data = lookup->second.get();
if (data->mUseExternalTextureInSwapChain) {
gfxCriticalNote << "Disable ExternalTexture for SwapChain: "
<< aSwapChainId._0;
}
data->mUseExternalTextureInSwapChain = false;
}
bool WebGPUParent::EnsureExternalTextureForSwapChain(
ffi::WGPUSwapChainId aSwapChainId, ffi::WGPUDeviceId aDeviceId,
ffi::WGPUTextureId aTextureId, uint32_t aWidth, uint32_t aHeight,
struct ffi::WGPUTextureFormat aFormat, ffi::WGPUTextureUsages aUsage) {
auto ownerId = layers::RemoteTextureOwnerId{aSwapChainId._0};
const auto& lookup = mPresentationDataMap.find(ownerId);
if (lookup == mPresentationDataMap.end()) {
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
return false;
}
RefPtr<PresentationData> data = lookup->second.get();
if (!data->mUseExternalTextureInSwapChain) {
MOZ_ASSERT_UNREACHABLE("unexpected to be called");
return false;
}
// Recycled ExternalTexture if it exists.
if (!data->mRecycledExternalTextures.empty()) {
std::shared_ptr<ExternalTexture> texture =
data->mRecycledExternalTextures.front();
// Check if the texture is recyclable.
if (texture->mWidth == aWidth && texture->mHeight == aHeight &&
texture->mFormat.tag == aFormat.tag && texture->mUsage == aUsage) {
data->mRecycledExternalTextures.pop_front();
mExternalTextures.emplace(aTextureId, texture);
return true;
}
data->mRecycledExternalTextures.clear();
}
auto externalTexture = CreateExternalTexture(aDeviceId, aTextureId, aWidth,
aHeight, aFormat, aUsage);
return static_cast<bool>(externalTexture);
}
std::shared_ptr<ExternalTexture> WebGPUParent::CreateExternalTexture(
ffi::WGPUDeviceId aDeviceId, ffi::WGPUTextureId aTextureId, uint32_t aWidth,
uint32_t aHeight, const struct ffi::WGPUTextureFormat aFormat,
ffi::WGPUTextureUsages aUsage) {
MOZ_RELEASE_ASSERT(mExternalTextures.find(aTextureId) ==
mExternalTextures.end());
UniquePtr<ExternalTexture> texture = ExternalTexture::Create(
mContext.get(), aDeviceId, aWidth, aHeight, aFormat, aUsage);
if (!texture) {
return nullptr;
}
std::shared_ptr<ExternalTexture> shared(texture.release());
mExternalTextures.emplace(aTextureId, shared);
return shared;
}
std::shared_ptr<ExternalTexture> WebGPUParent::GetExternalTexture(
ffi::WGPUTextureId aId) {
auto it = mExternalTextures.find(aId);
if (it == mExternalTextures.end()) {
return nullptr;
}
return it->second;
}
/* static */
Maybe<ffi::WGPUFfiLUID> WebGPUParent::GetCompositorDeviceLuid() {
#if defined(XP_WIN)
const RefPtr<ID3D11Device> d3d11Device =
gfx::DeviceManagerDx::Get()->GetCompositorDevice();
if (!d3d11Device) {
gfxCriticalNoteOnce << "CompositorDevice does not exist";
return Nothing();
}
RefPtr<IDXGIDevice> dxgiDevice;
d3d11Device->QueryInterface((IDXGIDevice**)getter_AddRefs(dxgiDevice));
RefPtr<IDXGIAdapter> dxgiAdapter;
dxgiDevice->GetAdapter(getter_AddRefs(dxgiAdapter));
DXGI_ADAPTER_DESC desc;
if (FAILED(dxgiAdapter->GetDesc(&desc))) {
gfxCriticalNoteOnce << "Failed to get DXGI_ADAPTER_DESC";
return Nothing();
}
return Some(
ffi::WGPUFfiLUID{desc.AdapterLuid.LowPart, desc.AdapterLuid.HighPart});
#else
return Nothing();
#endif
}
} // namespace mozilla::webgpu