Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#include "mozilla/Hal.h"
#include "mozilla/HalSensor.h"
#include "nsContentUtils.h"
#include "nsDeviceSensors.h"
#include "nsGlobalWindowInner.h"
#include "nsPIDOMWindow.h"
#include "nsIScriptObjectPrincipal.h"
#include "mozilla/Preferences.h"
#include "mozilla/StaticPrefs_device.h"
#include "mozilla/Attributes.h"
#include "mozilla/dom/BrowsingContext.h"
#include "mozilla/dom/DeviceLightEvent.h"
#include "mozilla/dom/DeviceOrientationEvent.h"
#include "mozilla/dom/Document.h"
#include "mozilla/dom/Event.h"
#include "mozilla/dom/UserProximityEvent.h"
#include "mozilla/ErrorResult.h"
#include <cmath>
using namespace mozilla;
using namespace mozilla::dom;
using namespace hal;
class nsIDOMWindow;
#undef near
#define DEFAULT_SENSOR_POLL 100
static const nsTArray<nsIDOMWindow*>::index_type NoIndex =
nsTArray<nsIDOMWindow*>::NoIndex;
class nsDeviceSensorData final : public nsIDeviceSensorData {
public:
NS_DECL_ISUPPORTS
NS_DECL_NSIDEVICESENSORDATA
nsDeviceSensorData(unsigned long type, double x, double y, double z);
private:
~nsDeviceSensorData();
protected:
unsigned long mType;
double mX, mY, mZ;
};
nsDeviceSensorData::nsDeviceSensorData(unsigned long type, double x, double y,
double z)
: mType(type), mX(x), mY(y), mZ(z) {}
NS_INTERFACE_MAP_BEGIN(nsDeviceSensorData)
NS_INTERFACE_MAP_ENTRY_AMBIGUOUS(nsISupports, nsIDeviceSensorData)
NS_INTERFACE_MAP_END
NS_IMPL_ADDREF(nsDeviceSensorData)
NS_IMPL_RELEASE(nsDeviceSensorData)
nsDeviceSensorData::~nsDeviceSensorData() = default;
NS_IMETHODIMP nsDeviceSensorData::GetType(uint32_t* aType) {
NS_ENSURE_ARG_POINTER(aType);
*aType = mType;
return NS_OK;
}
NS_IMETHODIMP nsDeviceSensorData::GetX(double* aX) {
NS_ENSURE_ARG_POINTER(aX);
*aX = mX;
return NS_OK;
}
NS_IMETHODIMP nsDeviceSensorData::GetY(double* aY) {
NS_ENSURE_ARG_POINTER(aY);
*aY = mY;
return NS_OK;
}
NS_IMETHODIMP nsDeviceSensorData::GetZ(double* aZ) {
NS_ENSURE_ARG_POINTER(aZ);
*aZ = mZ;
return NS_OK;
}
NS_IMPL_ISUPPORTS(nsDeviceSensors, nsIDeviceSensors)
nsDeviceSensors::nsDeviceSensors() {
mIsUserProximityNear = false;
mLastDOMMotionEventTime = TimeStamp::Now();
for (int i = 0; i < NUM_SENSOR_TYPE; i++) {
nsTArray<nsIDOMWindow*>* windows = new nsTArray<nsIDOMWindow*>();
mWindowListeners.AppendElement(windows);
}
mLastDOMMotionEventTime = TimeStamp::Now();
}
nsDeviceSensors::~nsDeviceSensors() {
for (int i = 0; i < NUM_SENSOR_TYPE; i++) {
if (IsSensorEnabled(i)) UnregisterSensorObserver((SensorType)i, this);
}
for (int i = 0; i < NUM_SENSOR_TYPE; i++) {
delete mWindowListeners[i];
}
}
NS_IMETHODIMP nsDeviceSensors::HasWindowListener(uint32_t aType,
nsIDOMWindow* aWindow,
bool* aRetVal) {
if (!IsSensorAllowedByPref(aType, aWindow))
*aRetVal = false;
else
*aRetVal = mWindowListeners[aType]->IndexOf(aWindow) != NoIndex;
return NS_OK;
}
class DeviceSensorTestEvent : public Runnable {
public:
DeviceSensorTestEvent(nsDeviceSensors* aTarget, uint32_t aType)
: mozilla::Runnable("DeviceSensorTestEvent"),
mTarget(aTarget),
mType(aType) {}
NS_IMETHOD Run() override {
SensorData sensorData;
sensorData.sensor() = static_cast<SensorType>(mType);
sensorData.timestamp() = PR_Now();
sensorData.values().AppendElement(0.5f);
sensorData.values().AppendElement(0.5f);
sensorData.values().AppendElement(0.5f);
sensorData.values().AppendElement(0.5f);
mTarget->Notify(sensorData);
return NS_OK;
}
private:
RefPtr<nsDeviceSensors> mTarget;
uint32_t mType;
};
NS_IMETHODIMP nsDeviceSensors::AddWindowListener(uint32_t aType,
nsIDOMWindow* aWindow) {
if (!IsSensorAllowedByPref(aType, aWindow)) return NS_OK;
if (mWindowListeners[aType]->IndexOf(aWindow) != NoIndex) return NS_OK;
if (!IsSensorEnabled(aType)) {
RegisterSensorObserver((SensorType)aType, this);
}
mWindowListeners[aType]->AppendElement(aWindow);
if (StaticPrefs::device_sensors_test_events()) {
nsCOMPtr<nsIRunnable> event = new DeviceSensorTestEvent(this, aType);
NS_DispatchToCurrentThread(event);
}
return NS_OK;
}
NS_IMETHODIMP nsDeviceSensors::RemoveWindowListener(uint32_t aType,
nsIDOMWindow* aWindow) {
if (mWindowListeners[aType]->IndexOf(aWindow) == NoIndex) return NS_OK;
mWindowListeners[aType]->RemoveElement(aWindow);
if (mWindowListeners[aType]->Length() == 0)
UnregisterSensorObserver((SensorType)aType, this);
return NS_OK;
}
NS_IMETHODIMP nsDeviceSensors::RemoveWindowAsListener(nsIDOMWindow* aWindow) {
for (int i = 0; i < NUM_SENSOR_TYPE; i++) {
RemoveWindowListener((SensorType)i, aWindow);
}
return NS_OK;
}
static bool WindowCannotReceiveSensorEvent(nsPIDOMWindowInner* aWindow) {
// Check to see if this window is in the background.
if (!aWindow || !aWindow->IsCurrentInnerWindow()) {
return true;
}
nsPIDOMWindowOuter* windowOuter = aWindow->GetOuterWindow();
BrowsingContext* topBC = aWindow->GetBrowsingContext()->Top();
if (windowOuter->IsBackground() || !topBC->GetIsActiveBrowserWindow()) {
nsGlobalWindowInner* win = nsGlobalWindowInner::Cast(aWindow);
nsIPrincipal* principal = win->GetPrincipal();
if (principal &&
principal->Equals(
nsContentUtils::GetFingerprintingProtectionPrincipal())) {
return false;
}
return true;
}
// Check to see if this window is a cross-origin iframe:
if (!topBC->IsInProcess()) {
return true;
}
nsCOMPtr<nsIScriptObjectPrincipal> sop = do_QueryInterface(aWindow);
nsCOMPtr<nsIScriptObjectPrincipal> topSop =
do_QueryInterface(topBC->GetDOMWindow());
if (!sop || !topSop) {
return true;
}
nsIPrincipal* principal = sop->GetPrincipal();
nsIPrincipal* topPrincipal = topSop->GetPrincipal();
if (!principal || !topPrincipal) {
return true;
}
return !principal->Subsumes(topPrincipal);
}
// Holds the device orientation in Euler angle degrees (azimuth, pitch, roll).
struct Orientation {
enum OrientationReference { kRelative = 0, kAbsolute };
static Orientation RadToDeg(const Orientation& aOrient) {
const static double kRadToDeg = 180.0 / M_PI;
return {aOrient.alpha * kRadToDeg, aOrient.beta * kRadToDeg,
aOrient.gamma * kRadToDeg};
}
double alpha;
double beta;
double gamma;
};
static Orientation RotationVectorToOrientation(double aX, double aY, double aZ,
double aW) {
double mat[9];
mat[0] = 1 - 2 * aY * aY - 2 * aZ * aZ;
mat[1] = 2 * aX * aY - 2 * aZ * aW;
mat[2] = 2 * aX * aZ + 2 * aY * aW;
mat[3] = 2 * aX * aY + 2 * aZ * aW;
mat[4] = 1 - 2 * aX * aX - 2 * aZ * aZ;
mat[5] = 2 * aY * aZ - 2 * aX * aW;
mat[6] = 2 * aX * aZ - 2 * aY * aW;
mat[7] = 2 * aY * aZ + 2 * aX * aW;
mat[8] = 1 - 2 * aX * aX - 2 * aY * aY;
Orientation orient;
if (mat[8] > 0) {
orient.alpha = atan2(-mat[1], mat[4]);
orient.beta = asin(mat[7]);
orient.gamma = atan2(-mat[6], mat[8]);
} else if (mat[8] < 0) {
orient.alpha = atan2(mat[1], -mat[4]);
orient.beta = -asin(mat[7]);
orient.beta += (orient.beta >= 0) ? -M_PI : M_PI;
orient.gamma = atan2(mat[6], -mat[8]);
} else {
if (mat[6] > 0) {
orient.alpha = atan2(-mat[1], mat[4]);
orient.beta = asin(mat[7]);
orient.gamma = -M_PI_2;
} else if (mat[6] < 0) {
orient.alpha = atan2(mat[1], -mat[4]);
orient.beta = -asin(mat[7]);
orient.beta += (orient.beta >= 0) ? -M_PI : M_PI;
orient.gamma = -M_PI_2;
} else {
orient.alpha = atan2(mat[3], mat[0]);
orient.beta = (mat[7] > 0) ? M_PI_2 : -M_PI_2;
orient.gamma = 0;
}
}
if (orient.alpha < 0) {
orient.alpha += 2 * M_PI;
}
return Orientation::RadToDeg(orient);
}
void nsDeviceSensors::Notify(const mozilla::hal::SensorData& aSensorData) {
uint32_t type = aSensorData.sensor();
const nsTArray<float>& values = aSensorData.values();
size_t len = values.Length();
double x = len > 0 ? values[0] : 0.0;
double y = len > 1 ? values[1] : 0.0;
double z = len > 2 ? values[2] : 0.0;
double w = len > 3 ? values[3] : 0.0;
PRTime timestamp = aSensorData.timestamp();
nsCOMArray<nsIDOMWindow> windowListeners;
for (uint32_t i = 0; i < mWindowListeners[type]->Length(); i++) {
windowListeners.AppendObject(mWindowListeners[type]->SafeElementAt(i));
}
for (uint32_t i = windowListeners.Count(); i > 0;) {
--i;
nsCOMPtr<nsPIDOMWindowInner> pwindow =
do_QueryInterface(windowListeners[i]);
if (WindowCannotReceiveSensorEvent(pwindow)) {
continue;
}
if (nsCOMPtr<Document> doc = pwindow->GetDoc()) {
nsCOMPtr<mozilla::dom::EventTarget> target =
do_QueryInterface(windowListeners[i]);
if (type == nsIDeviceSensorData::TYPE_ACCELERATION ||
type == nsIDeviceSensorData::TYPE_LINEAR_ACCELERATION ||
type == nsIDeviceSensorData::TYPE_GYROSCOPE) {
FireDOMMotionEvent(doc, target, type, timestamp, x, y, z);
} else if (type == nsIDeviceSensorData::TYPE_ORIENTATION) {
FireDOMOrientationEvent(target, x, y, z, Orientation::kAbsolute);
} else if (type == nsIDeviceSensorData::TYPE_ROTATION_VECTOR) {
const Orientation orient = RotationVectorToOrientation(x, y, z, w);
FireDOMOrientationEvent(target, orient.alpha, orient.beta, orient.gamma,
Orientation::kAbsolute);
} else if (type == nsIDeviceSensorData::TYPE_GAME_ROTATION_VECTOR) {
const Orientation orient = RotationVectorToOrientation(x, y, z, w);
FireDOMOrientationEvent(target, orient.alpha, orient.beta, orient.gamma,
Orientation::kRelative);
} else if (type == nsIDeviceSensorData::TYPE_PROXIMITY) {
MaybeFireDOMUserProximityEvent(target, x, z);
} else if (type == nsIDeviceSensorData::TYPE_LIGHT) {
FireDOMLightEvent(target, x);
}
}
}
}
void nsDeviceSensors::FireDOMLightEvent(mozilla::dom::EventTarget* aTarget,
double aValue) {
DeviceLightEventInit init;
init.mBubbles = true;
init.mCancelable = false;
init.mValue = round(aValue);
RefPtr<DeviceLightEvent> event =
DeviceLightEvent::Constructor(aTarget, u"devicelight"_ns, init);
event->SetTrusted(true);
aTarget->DispatchEvent(*event);
}
void nsDeviceSensors::MaybeFireDOMUserProximityEvent(
mozilla::dom::EventTarget* aTarget, double aValue, double aMax) {
bool near = (aValue < aMax);
if (mIsUserProximityNear != near) {
mIsUserProximityNear = near;
FireDOMUserProximityEvent(aTarget, mIsUserProximityNear);
}
}
void nsDeviceSensors::FireDOMUserProximityEvent(
mozilla::dom::EventTarget* aTarget, bool aNear) {
UserProximityEventInit init;
init.mBubbles = true;
init.mCancelable = false;
init.mNear = aNear;
RefPtr<UserProximityEvent> event =
UserProximityEvent::Constructor(aTarget, u"userproximity"_ns, init);
event->SetTrusted(true);
aTarget->DispatchEvent(*event);
}
void nsDeviceSensors::FireDOMOrientationEvent(EventTarget* aTarget,
double aAlpha, double aBeta,
double aGamma, bool aIsAbsolute) {
DeviceOrientationEventInit init;
init.mBubbles = true;
init.mCancelable = false;
init.mAlpha.SetValue(aAlpha);
init.mBeta.SetValue(aBeta);
init.mGamma.SetValue(aGamma);
init.mAbsolute = aIsAbsolute;
auto Dispatch = [&](EventTarget* aEventTarget, const nsAString& aType) {
RefPtr<DeviceOrientationEvent> event =
DeviceOrientationEvent::Constructor(aEventTarget, aType, init);
event->SetTrusted(true);
aEventTarget->DispatchEvent(*event);
};
Dispatch(aTarget, aIsAbsolute ? u"deviceorientationabsolute"_ns
: u"deviceorientation"_ns);
// This is used to determine whether relative events have been dispatched
// during the current session, in which case we don't dispatch the additional
// compatibility events.
static bool sIsDispatchingRelativeEvents = false;
sIsDispatchingRelativeEvents = sIsDispatchingRelativeEvents || !aIsAbsolute;
// Android devices with SENSOR_GAME_ROTATION_VECTOR support dispatch
// relative events for "deviceorientation" by default, while other platforms
// and devices without such support dispatch absolute events by default.
if (aIsAbsolute && !sIsDispatchingRelativeEvents) {
// For absolute events on devices without support for relative events,
// we need to additionally dispatch type "deviceorientation" to keep
// backwards-compatibility.
Dispatch(aTarget, u"deviceorientation"_ns);
}
}
void nsDeviceSensors::FireDOMMotionEvent(Document* doc, EventTarget* target,
uint32_t type, PRTime timestamp,
double x, double y, double z) {
// Attempt to coalesce events
TimeDuration sensorPollDuration =
TimeDuration::FromMilliseconds(DEFAULT_SENSOR_POLL);
bool fireEvent =
(TimeStamp::Now() > mLastDOMMotionEventTime + sensorPollDuration) ||
StaticPrefs::device_sensors_test_events();
switch (type) {
case nsIDeviceSensorData::TYPE_LINEAR_ACCELERATION:
if (!mLastAcceleration) {
mLastAcceleration.emplace();
}
mLastAcceleration->mX.SetValue(x);
mLastAcceleration->mY.SetValue(y);
mLastAcceleration->mZ.SetValue(z);
break;
case nsIDeviceSensorData::TYPE_ACCELERATION:
if (!mLastAccelerationIncludingGravity) {
mLastAccelerationIncludingGravity.emplace();
}
mLastAccelerationIncludingGravity->mX.SetValue(x);
mLastAccelerationIncludingGravity->mY.SetValue(y);
mLastAccelerationIncludingGravity->mZ.SetValue(z);
break;
case nsIDeviceSensorData::TYPE_GYROSCOPE:
if (!mLastRotationRate) {
mLastRotationRate.emplace();
}
mLastRotationRate->mAlpha.SetValue(x);
mLastRotationRate->mBeta.SetValue(y);
mLastRotationRate->mGamma.SetValue(z);
break;
}
if (fireEvent) {
if (!mLastAcceleration) {
mLastAcceleration.emplace();
}
if (!mLastAccelerationIncludingGravity) {
mLastAccelerationIncludingGravity.emplace();
}
if (!mLastRotationRate) {
mLastRotationRate.emplace();
}
} else if (!mLastAcceleration || !mLastAccelerationIncludingGravity ||
!mLastRotationRate) {
return;
}
IgnoredErrorResult ignored;
RefPtr<Event> event =
doc->CreateEvent(u"DeviceMotionEvent"_ns, CallerType::System, ignored);
if (!event) {
return;
}
DeviceMotionEvent* me = static_cast<DeviceMotionEvent*>(event.get());
me->InitDeviceMotionEvent(
u"devicemotion"_ns, true, false, *mLastAcceleration,
*mLastAccelerationIncludingGravity, *mLastRotationRate,
Nullable<double>(DEFAULT_SENSOR_POLL), Nullable<uint64_t>(timestamp));
event->SetTrusted(true);
target->DispatchEvent(*event);
mLastRotationRate.reset();
mLastAccelerationIncludingGravity.reset();
mLastAcceleration.reset();
mLastDOMMotionEventTime = TimeStamp::Now();
}
bool nsDeviceSensors::IsSensorAllowedByPref(uint32_t aType,
nsIDOMWindow* aWindow) {
// checks "device.sensors.enabled" master pref
if (!StaticPrefs::device_sensors_enabled()) {
return false;
}
nsCOMPtr<nsPIDOMWindowInner> window = do_QueryInterface(aWindow);
nsCOMPtr<Document> doc;
if (window) {
doc = window->GetExtantDoc();
}
switch (aType) {
case nsIDeviceSensorData::TYPE_LINEAR_ACCELERATION:
case nsIDeviceSensorData::TYPE_ACCELERATION:
case nsIDeviceSensorData::TYPE_GYROSCOPE:
// checks "device.sensors.motion.enabled" pref
if (!StaticPrefs::device_sensors_motion_enabled()) {
return false;
}
if (doc) {
doc->WarnOnceAbout(DeprecatedOperations::eMotionEvent);
}
break;
case nsIDeviceSensorData::TYPE_GAME_ROTATION_VECTOR:
case nsIDeviceSensorData::TYPE_ORIENTATION:
case nsIDeviceSensorData::TYPE_ROTATION_VECTOR:
// checks "device.sensors.orientation.enabled" pref
if (!StaticPrefs::device_sensors_orientation_enabled()) {
return false;
}
if (doc) {
doc->WarnOnceAbout(DeprecatedOperations::eOrientationEvent);
}
break;
case nsIDeviceSensorData::TYPE_PROXIMITY:
// checks "device.sensors.proximity.enabled" pref
if (!StaticPrefs::device_sensors_proximity_enabled()) {
return false;
}
if (doc) {
doc->WarnOnceAbout(DeprecatedOperations::eProximityEvent, true);
}
break;
case nsIDeviceSensorData::TYPE_LIGHT:
// checks "device.sensors.ambientLight.enabled" pref
if (!StaticPrefs::device_sensors_ambientLight_enabled()) {
return false;
}
if (doc) {
doc->WarnOnceAbout(DeprecatedOperations::eAmbientLightEvent, true);
}
break;
default:
MOZ_ASSERT_UNREACHABLE("Device sensor type not recognised");
return false;
}
if (!window) {
return true;
}
return !nsGlobalWindowInner::Cast(window)->ShouldResistFingerprinting(
RFPTarget::DeviceSensors);
}