Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim:set ts=2 sw=2 sts=2 et cindent: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
#ifndef FFTBlock_h_
#define FFTBlock_h_
#include "AlignedTArray.h"
#include "AudioNodeEngine.h"
#include "FFVPXRuntimeLinker.h"
#include "ffvpx/tx.h"
namespace mozilla {
// This class defines an FFT block, loosely modeled after Blink's FFTFrame
// class to make sharing code with Blink easy.
class FFTBlock final {
union ComplexU {
float f[2];
struct {
float r;
float i;
};
};
public:
static void MainThreadInit() {
FFVPXRuntimeLinker::Init();
if (!sFFTFuncs.init) {
FFVPXRuntimeLinker::GetFFTFuncs(&sFFTFuncs);
}
}
explicit FFTBlock(uint32_t aFFTSize, float aInverseScaling = 1.0f)
: mInverseScaling(aInverseScaling) {
MOZ_COUNT_CTOR(FFTBlock);
SetFFTSize(aFFTSize);
}
~FFTBlock() {
MOZ_COUNT_DTOR(FFTBlock);
Clear();
}
// Return a new FFTBlock with frequency components interpolated between
// |block0| and |block1| with |interp| between 0.0 and 1.0.
static FFTBlock* CreateInterpolatedBlock(const FFTBlock& block0,
const FFTBlock& block1,
double interp);
// Transform FFTSize() points of aData and store the result internally.
void PerformFFT(const float* aData) {
if (!EnsureFFT()) {
return;
}
mFn(mTxCtx, mOutputBuffer.Elements()->f, const_cast<float*>(aData),
2 * sizeof(float));
#ifdef DEBUG
mInversePerformed = false;
#endif
}
// Inverse-transform internal frequency data and store the resulting
// FFTSize() points in |aDataOut|. If frequency data has not already been
// scaled, then the output will need scaling by 1/FFTSize().
void GetInverse(float* aDataOut) {
if (!EnsureIFFT()) {
std::fill_n(aDataOut, mFFTSize, 0.0f);
return;
};
// When performing an inverse transform, tx overwrites the input. This
// asserts that forward / inverse transforms are interleaved to avoid having
// to keep the input around.
MOZ_ASSERT(!mInversePerformed);
mIFn(mITxCtx, aDataOut, mOutputBuffer.Elements()->f, 2 * sizeof(float));
#ifdef DEBUG
mInversePerformed = true;
#endif
}
void Multiply(const FFTBlock& aFrame) {
MOZ_ASSERT(!mInversePerformed);
uint32_t halfSize = mFFTSize / 2;
// DFTs are not packed.
MOZ_ASSERT(mOutputBuffer[0].i == 0);
MOZ_ASSERT(aFrame.mOutputBuffer[0].i == 0);
BufferComplexMultiply(mOutputBuffer.Elements()->f,
aFrame.mOutputBuffer.Elements()->f,
mOutputBuffer.Elements()->f, halfSize);
mOutputBuffer[halfSize].r *= aFrame.mOutputBuffer[halfSize].r;
// This would have been set to NaN if either real component was NaN.
mOutputBuffer[0].i = 0.0f;
}
// Perform a forward FFT on |aData|, assuming zeros after dataSize samples,
// and pre-scale the generated internal frequency domain coefficients so
// that GetInverseWithoutScaling() can be used to transform to the time
// domain. This is useful for convolution kernels.
void PadAndMakeScaledDFT(const float* aData, size_t dataSize) {
MOZ_ASSERT(dataSize <= FFTSize());
AlignedTArray<float> paddedData;
paddedData.SetLength(FFTSize());
AudioBufferCopyWithScale(aData, 1.0f / AssertedCast<float>(FFTSize()),
paddedData.Elements(), dataSize);
PodZero(paddedData.Elements() + dataSize, mFFTSize - dataSize);
PerformFFT(paddedData.Elements());
}
// aSize must be a power of 2
void SetFFTSize(uint32_t aSize) {
MOZ_ASSERT(CountPopulation32(aSize) == 1);
mFFTSize = aSize;
mOutputBuffer.SetLength(aSize / 2 + 1);
PodZero(mOutputBuffer.Elements(), aSize / 2 + 1);
Clear();
}
// Return the average group delay and removes this from the frequency data.
double ExtractAverageGroupDelay();
uint32_t FFTSize() const { return mFFTSize; }
float RealData(uint32_t aIndex) const {
MOZ_ASSERT(!mInversePerformed);
return mOutputBuffer[aIndex].r;
}
float& RealData(uint32_t aIndex) {
MOZ_ASSERT(!mInversePerformed);
return mOutputBuffer[aIndex].r;
}
float ImagData(uint32_t aIndex) const {
MOZ_ASSERT(!mInversePerformed);
return mOutputBuffer[aIndex].i;
}
float& ImagData(uint32_t aIndex) {
MOZ_ASSERT(!mInversePerformed);
return mOutputBuffer[aIndex].i;
}
size_t SizeOfExcludingThis(MallocSizeOf aMallocSizeOf) const {
size_t amount = 0;
// malloc_usable_size can't be used here because the pointer isn't
// necessarily from malloc. This value has been manually checked.
if (mTxCtx) {
amount += 711;
}
if (mTxCtx) {
amount += 711;
}
amount += mOutputBuffer.ShallowSizeOfExcludingThis(aMallocSizeOf);
return amount;
}
size_t SizeOfIncludingThis(MallocSizeOf aMallocSizeOf) const {
return aMallocSizeOf(this) + SizeOfExcludingThis(aMallocSizeOf);
}
FFTBlock(const FFTBlock& other) = delete;
void operator=(const FFTBlock& other) = delete;
private:
bool EnsureFFT() {
if (!mTxCtx) {
if (!sFFTFuncs.init) {
return false;
}
// Forward transform is always unscaled for our purpose.
float scale = 1.0f;
int rv = sFFTFuncs.init(&mTxCtx, &mFn, AV_TX_FLOAT_RDFT, 0 /* forward */,
AssertedCast<int>(mFFTSize), &scale, 0);
MOZ_ASSERT(!rv, "av_tx_init: invalid parameters (forward)");
return !rv;
}
return true;
}
bool EnsureIFFT() {
if (!mITxCtx) {
if (!sFFTFuncs.init) {
return false;
}
int rv =
sFFTFuncs.init(&mITxCtx, &mIFn, AV_TX_FLOAT_RDFT, 1 /* inverse */,
AssertedCast<int>(mFFTSize), &mInverseScaling, 0);
MOZ_ASSERT(!rv, "av_tx_init: invalid parameters (inverse)");
return !rv;
}
return true;
}
void Clear() {
if (mTxCtx) {
sFFTFuncs.uninit(&mTxCtx);
mTxCtx = nullptr;
mFn = nullptr;
}
if (mITxCtx) {
sFFTFuncs.uninit(&mITxCtx);
mITxCtx = nullptr;
mIFn = nullptr;
}
}
void AddConstantGroupDelay(double sampleFrameDelay);
void InterpolateFrequencyComponents(const FFTBlock& block0,
const FFTBlock& block1, double interp);
static FFmpegFFTFuncs sFFTFuncs;
// Context and function pointer for forward transform
AVTXContext* mTxCtx{};
av_tx_fn mFn{};
// Context and function pointer for inverse transform
AVTXContext* mITxCtx{};
av_tx_fn mIFn{};
AlignedTArray<ComplexU> mOutputBuffer;
uint32_t mFFTSize{};
// A scaling that is performed when doing an inverse transform. The forward
// transform is always unscaled.
float mInverseScaling;
#ifdef DEBUG
bool mInversePerformed = false;
#endif
};
} // namespace mozilla
#endif