Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 2; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
#include "clang/AST/AST.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/Mangle.h"
#include "clang/AST/RecordLayout.h"
#include "clang/AST/RecursiveASTVisitor.h"
#include "clang/Basic/FileManager.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/Version.h"
#include "clang/Format/Format.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendPluginRegistry.h"
#include "clang/Lex/Lexer.h"
#include "clang/Lex/PPCallbacks.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Lex/TokenConcatenation.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/Support/JSON.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <fstream>
#include <iostream>
#include <map>
#include <memory>
#include <sstream>
#include <stack>
#include <string>
#include <tuple>
#include <unordered_set>
#include <stdio.h>
#include <stdlib.h>
#include "BindingOperations.h"
#include "FileOperations.h"
#include "StringOperations.h"
#include "from-clangd/HeuristicResolver.h"
#if CLANG_VERSION_MAJOR < 8
// Starting with Clang 8.0 some basic functions have been renamed
#define getBeginLoc getLocStart
#define getEndLoc getLocEnd
#endif
// We want std::make_unique, but that's only available in c++14. In versions
// prior to that, we need to fall back to llvm's make_unique. It's also the
// case that we expect clang 10 to build with c++14 and clang 9 and earlier to
// build with c++11, at least as suggested by the llvm-config --cxxflags on
// non-windows platforms. mozilla-central seems to build with -std=c++17 on
// windows so we need to make this decision based on __cplusplus instead of
// the CLANG_VERSION_MAJOR.
#if __cplusplus < 201402L
using llvm::make_unique;
#else
using std::make_unique;
#endif
using namespace clang;
const std::string GENERATED("__GENERATED__" PATHSEP_STRING);
// Absolute path to directory containing source code.
std::string Srcdir;
// Absolute path to objdir (including generated code).
std::string Objdir;
// Absolute path where analysis JSON output will be stored.
std::string Outdir;
enum class FileType {
// The file was either in the source tree nor objdir. It might be a system
// include, for example.
Unknown,
// A file from the source tree.
Source,
// A file from the objdir.
Generated,
};
// Takes an absolute path to a file, and returns the type of file it is. If
// it's a Source or Generated file, the provided inout path argument is modified
// in-place so that it is relative to the source dir or objdir, respectively.
FileType relativizePath(std::string &path) {
if (path.compare(0, Objdir.length(), Objdir) == 0) {
path.replace(0, Objdir.length(), GENERATED);
return FileType::Generated;
}
// Empty filenames can get turned into Srcdir when they are resolved as
// absolute paths, so we should exclude files that are exactly equal to
// Srcdir or anything outside Srcdir.
if (path.length() > Srcdir.length() &&
path.compare(0, Srcdir.length(), Srcdir) == 0) {
// Remove the trailing `/' as well.
path.erase(0, Srcdir.length() + 1);
return FileType::Source;
}
return FileType::Unknown;
}
#if !defined(_WIN32) && !defined(_WIN64)
#include <sys/time.h>
static double time() {
struct timeval Tv;
gettimeofday(&Tv, nullptr);
return double(Tv.tv_sec) + double(Tv.tv_usec) / 1000000.;
}
#endif
// Return true if |input| is a valid C++ identifier. We don't want to generate
// analysis information for operators, string literals, etc. by accident since
// it trips up consumers of the data.
static bool isValidIdentifier(std::string Input) {
for (char C : Input) {
if (!(isalpha(C) || isdigit(C) || C == '_')) {
return false;
}
}
return true;
}
template <size_t N>
static bool stringStartsWith(const std::string &Input,
const char (&Prefix)[N]) {
return Input.length() > N - 1 && memcmp(Input.c_str(), Prefix, N - 1) == 0;
}
static bool isASCII(const std::string &Input) {
for (char C : Input) {
if (C & 0x80) {
return false;
}
}
return true;
}
struct RAIITracer {
RAIITracer(const char *log) : mLog(log) { printf("<%s>\n", mLog); }
~RAIITracer() { printf("</%s>\n", mLog); }
const char *mLog;
};
#define TRACEFUNC RAIITracer tracer(__FUNCTION__);
// Sets variable to value on creation then resets variable to its original
// value on destruction
template <typename T> class ValueRollback {
public:
template <typename U = T>
ValueRollback(T &variable, U &&value)
: mVariable{&variable},
mSavedValue{std::exchange(variable, std::forward<U>(value))} {}
ValueRollback(ValueRollback &&other) noexcept
: mVariable{std::exchange(other.mVariable, nullptr)},
mSavedValue{std::move(other.mSavedValue)} {}
ValueRollback(const ValueRollback &) = delete;
ValueRollback &operator=(ValueRollback &&) = delete;
ValueRollback &operator=(const ValueRollback &) = delete;
~ValueRollback() {
if (mVariable)
*mVariable = std::move(mSavedValue);
}
private:
T *mVariable;
T mSavedValue;
};
class IndexConsumer;
bool isPure(FunctionDecl *D) {
#if CLANG_VERSION_MAJOR >= 18
return D->isPureVirtual();
#else
return D->isPure();
#endif
}
// For each C++ file seen by the analysis (.cpp or .h), we track a
// FileInfo. This object tracks whether the file is "interesting" (i.e., whether
// it's in the source dir or the objdir). We also store the analysis output
// here.
struct FileInfo {
FileInfo(std::string &Rname) : Realname(Rname) {
switch (relativizePath(Realname)) {
case FileType::Generated:
Interesting = true;
Generated = true;
break;
case FileType::Source:
Interesting = true;
Generated = false;
break;
case FileType::Unknown:
Interesting = false;
Generated = false;
break;
}
}
std::string Realname;
std::vector<std::string> Output;
bool Interesting;
bool Generated;
};
struct MacroExpansionState {
Token MacroNameToken;
const MacroInfo *MacroInfo = nullptr;
// other macro symbols this expansion depends on
std::vector<std::string> Dependencies;
std::string Expansion;
std::map<SourceLocation, unsigned> TokenLocations;
SourceRange Range;
Token PrevPrevTok;
Token PrevTok;
};
struct ExpandedMacro {
std::string Symbol;
std::string Key; // "{Symbol}(,{Dependencies})..."
std::string Expansion;
std::map<SourceLocation, unsigned> TokenLocations;
};
class IndexConsumer;
class PreprocessorHook : public PPCallbacks {
IndexConsumer *Indexer;
public:
PreprocessorHook(IndexConsumer *C) : Indexer(C) {}
virtual void FileChanged(SourceLocation Loc, FileChangeReason Reason,
SrcMgr::CharacteristicKind FileType,
FileID PrevFID) override;
virtual void InclusionDirective(SourceLocation HashLoc,
const Token &IncludeTok, StringRef FileName,
bool IsAngled, CharSourceRange FileNameRange,
#if CLANG_VERSION_MAJOR >= 16
OptionalFileEntryRef File,
#elif CLANG_VERSION_MAJOR >= 15
Optional<FileEntryRef> File,
#else
const FileEntry *File,
#endif
StringRef SearchPath, StringRef RelativePath,
#if CLANG_VERSION_MAJOR >= 19
const Module *SuggestedModule,
bool ModuleImported,
#else
const Module *Imported,
#endif
SrcMgr::CharacteristicKind FileType) override;
virtual void MacroDefined(const Token &Tok,
const MacroDirective *Md) override;
virtual void MacroExpands(const Token &Tok, const MacroDefinition &Md,
SourceRange Range, const MacroArgs *Ma) override;
virtual void MacroUndefined(const Token &Tok, const MacroDefinition &Md,
const MacroDirective *Undef) override;
virtual void Defined(const Token &Tok, const MacroDefinition &Md,
SourceRange Range) override;
virtual void Ifdef(SourceLocation Loc, const Token &Tok,
const MacroDefinition &Md) override;
virtual void Ifndef(SourceLocation Loc, const Token &Tok,
const MacroDefinition &Md) override;
};
class IndexConsumer : public ASTConsumer,
public RecursiveASTVisitor<IndexConsumer>,
public DiagnosticConsumer {
private:
CompilerInstance &CI;
SourceManager &SM;
LangOptions &LO;
std::map<FileID, std::unique_ptr<FileInfo>> FileMap;
MangleContext *CurMangleContext;
ASTContext *AstContext;
std::unique_ptr<clangd::HeuristicResolver> Resolver;
// Used during a macro expansion to build the expanded string
TokenConcatenation ConcatInfo;
std::optional<MacroExpansionState> MacroExpansionState;
// Keeps track of the positions of tokens inside each expanded macro
std::map<SourceLocation, ExpandedMacro> MacroMaps;
typedef RecursiveASTVisitor<IndexConsumer> Super;
// Tracks the set of declarations that the current expression/statement is
// nested inside of.
struct AutoSetContext {
AutoSetContext(IndexConsumer *Self, NamedDecl *Context,
bool VisitImplicit = false)
: Self(Self), Prev(Self->CurDeclContext), Decl(Context) {
this->VisitImplicit =
VisitImplicit || (Prev ? Prev->VisitImplicit : false);
Self->CurDeclContext = this;
}
~AutoSetContext() { Self->CurDeclContext = Prev; }
IndexConsumer *Self;
AutoSetContext *Prev;
NamedDecl *Decl;
bool VisitImplicit;
};
AutoSetContext *CurDeclContext;
FileInfo *getFileInfo(SourceLocation Loc) {
FileID Id = SM.getFileID(Loc);
std::map<FileID, std::unique_ptr<FileInfo>>::iterator It;
It = FileMap.find(Id);
if (It == FileMap.end()) {
// We haven't seen this file before. We need to make the FileInfo
// structure information ourselves
std::string Filename = std::string(SM.getFilename(Loc));
std::string Absolute;
// If Loc is a macro id rather than a file id, it Filename might be
// empty. Also for some types of file locations that are clang-internal
// like "<scratch>" it can return an empty Filename. In these cases we
// want to leave Absolute as empty.
if (!Filename.empty()) {
Absolute = getAbsolutePath(Filename);
if (Absolute.empty()) {
Absolute = Filename;
}
}
std::unique_ptr<FileInfo> Info = make_unique<FileInfo>(Absolute);
It = FileMap.insert(std::make_pair(Id, std::move(Info))).first;
}
return It->second.get();
}
// Helpers for processing declarations
// Should we ignore this location?
bool isInterestingLocation(SourceLocation Loc) {
if (SM.isMacroBodyExpansion(Loc)) {
Loc = SM.getFileLoc(Loc);
}
normalizeLocation(&Loc);
if (Loc.isInvalid()) {
return false;
}
return getFileInfo(Loc)->Interesting;
}
// Convert location to "line:column" or "line:column-column" given length.
// In resulting string rep, line is 1-based and zero-padded to 5 digits, while
// column is 0-based and unpadded.
std::string locationToString(SourceLocation Loc, size_t Length = 0) {
std::pair<FileID, unsigned> Pair = SM.getDecomposedLoc(Loc);
bool IsInvalid;
unsigned Line = SM.getLineNumber(Pair.first, Pair.second, &IsInvalid);
if (IsInvalid) {
return "";
}
unsigned Column = SM.getColumnNumber(Pair.first, Pair.second, &IsInvalid);
if (IsInvalid) {
return "";
}
if (Length) {
return stringFormat("%05d:%d-%d", Line, Column - 1, Column - 1 + Length);
} else {
return stringFormat("%05d:%d", Line, Column - 1);
}
}
// Convert SourceRange to "line-line" or "line".
// In the resulting string rep, line is 1-based.
std::string lineRangeToString(SourceRange Range, bool omitEnd = false) {
std::pair<FileID, unsigned> Begin = SM.getDecomposedLoc(Range.getBegin());
std::pair<FileID, unsigned> End = SM.getDecomposedLoc(Range.getEnd());
bool IsInvalid;
unsigned Line1 = SM.getLineNumber(Begin.first, Begin.second, &IsInvalid);
if (IsInvalid) {
return "";
}
unsigned Line2 = SM.getLineNumber(End.first, End.second, &IsInvalid);
if (IsInvalid) {
return "";
}
if (omitEnd && Line1 == Line2) {
return stringFormat("%d", Line1);
}
return stringFormat("%d-%d", Line1, Line2);
}
// Convert SourceRange to "PATH#line-line" or "PATH#line".
// If Range's file is same as fromFileID, PATH is omitted.
std::string pathAndLineRangeToString(FileID fromFileID, SourceRange Range) {
FileInfo *toFile = getFileInfo(Range.getBegin());
FileInfo *fromFile = FileMap.find(fromFileID)->second.get();
auto lineRange = lineRangeToString(Range, true);
if (lineRange.empty()) {
return "";
}
if (toFile == fromFile) {
return "#" + lineRange;
}
if (toFile->Realname.empty()) {
return "#" + lineRange;
}
std::string result = toFile->Realname;
result += "#";
result += lineRange;
return result;
}
// Convert SourceRange to "line:column-line:column".
// In the resulting string rep, line is 1-based, column is 0-based.
std::string fullRangeToString(SourceRange Range) {
std::pair<FileID, unsigned> Begin = SM.getDecomposedLoc(Range.getBegin());
std::pair<FileID, unsigned> End = SM.getDecomposedLoc(Range.getEnd());
bool IsInvalid;
unsigned Line1 = SM.getLineNumber(Begin.first, Begin.second, &IsInvalid);
if (IsInvalid) {
return "";
}
unsigned Column1 =
SM.getColumnNumber(Begin.first, Begin.second, &IsInvalid);
if (IsInvalid) {
return "";
}
unsigned Line2 = SM.getLineNumber(End.first, End.second, &IsInvalid);
if (IsInvalid) {
return "";
}
unsigned Column2 = SM.getColumnNumber(End.first, End.second, &IsInvalid);
if (IsInvalid) {
return "";
}
return stringFormat("%d:%d-%d:%d", Line1, Column1 - 1, Line2, Column2 - 1);
}
// Returns the qualified name of `d` without considering template parameters.
std::string getQualifiedName(const NamedDecl *D) {
const DeclContext *Ctx = D->getDeclContext();
if (Ctx->isFunctionOrMethod()) {
return D->getQualifiedNameAsString();
}
std::vector<const DeclContext *> Contexts;
// Collect contexts.
while (Ctx && isa<NamedDecl>(Ctx)) {
Contexts.push_back(Ctx);
Ctx = Ctx->getParent();
}
std::string Result;
std::reverse(Contexts.begin(), Contexts.end());
for (const DeclContext *DC : Contexts) {
if (const auto *Spec = dyn_cast<ClassTemplateSpecializationDecl>(DC)) {
Result += Spec->getNameAsString();
if (Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
std::string Backing;
llvm::raw_string_ostream Stream(Backing);
const TemplateArgumentList &TemplateArgs = Spec->getTemplateArgs();
printTemplateArgumentList(Stream, TemplateArgs.asArray(),
PrintingPolicy(CI.getLangOpts()));
Result += Stream.str();
}
} else if (const auto *Nd = dyn_cast<NamespaceDecl>(DC)) {
if (Nd->isAnonymousNamespace() || Nd->isInline()) {
continue;
}
Result += Nd->getNameAsString();
} else if (const auto *Rd = dyn_cast<RecordDecl>(DC)) {
if (!Rd->getIdentifier()) {
Result += "(anonymous)";
} else {
Result += Rd->getNameAsString();
}
} else if (const auto *Fd = dyn_cast<FunctionDecl>(DC)) {
Result += Fd->getNameAsString();
} else if (const auto *Ed = dyn_cast<EnumDecl>(DC)) {
// C++ [dcl.enum]p10: Each enum-name and each unscoped
// enumerator is declared in the scope that immediately contains
// the enum-specifier. Each scoped enumerator is declared in the
// scope of the enumeration.
if (Ed->isScoped() || Ed->getIdentifier())
Result += Ed->getNameAsString();
else
continue;
} else {
Result += cast<NamedDecl>(DC)->getNameAsString();
}
Result += "::";
}
if (D->getDeclName())
Result += D->getNameAsString();
else
Result += "(anonymous)";
return Result;
}
std::string mangleLocation(SourceLocation Loc,
std::string Backup = std::string()) {
FileInfo *F = getFileInfo(Loc);
std::string Filename = F->Realname;
if (Filename.length() == 0 && Backup.length() != 0) {
return Backup;
}
if (F->Generated) {
// Since generated files may be different on different platforms,
// we need to include a platform-specific thing in the hash. Otherwise
// we can end up with hash collisions where different symbols from
// different platforms map to the same thing.
char *Platform = getenv("MOZSEARCH_PLATFORM");
Filename =
std::string(Platform ? Platform : "") + std::string("@") + Filename;
}
return hash(Filename + std::string("@") + locationToString(Loc));
}
bool isAcceptableSymbolChar(char c) {
return isalpha(c) || isdigit(c) || c == '_' || c == '/';
}
std::string mangleFile(std::string Filename, FileType Type) {
// "Mangle" the file path, such that:
// 1. The majority of paths will still be mostly human-readable.
// 2. The sanitization algorithm doesn't produce collisions where two
// different unsanitized paths can result in the same sanitized paths.
// 3. The produced symbol doesn't cause problems with downstream consumers.
// In order to accomplish this, we keep alphanumeric chars, underscores,
// and slashes, and replace everything else with an "@xx" hex encoding.
// The majority of path characters are letters and slashes which don't get
// encoded, so that satisfies (1). Since "@" characters in the unsanitized
// path get encoded, there should be no "@" characters in the sanitized path
// that got preserved from the unsanitized input, so that should satisfy
// (2). And (3) was done by trial-and-error. Note in particular the dot (.)
// character needs to be encoded, or the symbol-search feature of mozsearch
// doesn't work correctly, as all dot characters in the symbol query get
// replaced by #.
for (size_t i = 0; i < Filename.length(); i++) {
char c = Filename[i];
if (isAcceptableSymbolChar(c)) {
continue;
}
char hex[4];
sprintf(hex, "@%02X", ((int)c) & 0xFF);
Filename.replace(i, 1, hex);
i += 2;
}
if (Type == FileType::Generated) {
// Since generated files may be different on different platforms,
// we need to include a platform-specific thing in the hash. Otherwise
// we can end up with hash collisions where different symbols from
// different platforms map to the same thing.
char *Platform = getenv("MOZSEARCH_PLATFORM");
Filename =
std::string(Platform ? Platform : "") + std::string("@") + Filename;
}
return Filename;
}
std::string mangleURL(std::string Url) {
return mangleFile(Url, FileType::Source);
}
std::string mangleQualifiedName(std::string Name) {
std::replace(Name.begin(), Name.end(), ' ', '_');
return Name;
}
std::string getMangledName(clang::MangleContext *Ctx,
const clang::NamedDecl *Decl) {
// Main functions will tend to collide because they inherently have similar
// signatures, so let's provide a custom location-based signature.
if (isa<FunctionDecl>(Decl) && cast<FunctionDecl>(Decl)->isMain()) {
return std::string("MF_") + mangleLocation(Decl->getLocation());
}
if (isa<FunctionDecl>(Decl) && cast<FunctionDecl>(Decl)->isExternC()) {
return cast<FunctionDecl>(Decl)->getNameAsString();
}
if (isa<FunctionDecl>(Decl) || isa<VarDecl>(Decl)) {
const DeclContext *DC = Decl->getDeclContext();
if (isa<TranslationUnitDecl>(DC) || isa<NamespaceDecl>(DC) ||
isa<LinkageSpecDecl>(DC) ||
// isa<ExternCContextDecl>(DC) ||
isa<TagDecl>(DC)) {
llvm::SmallVector<char, 512> Output;
llvm::raw_svector_ostream Out(Output);
#if CLANG_VERSION_MAJOR >= 11
// This code changed upstream in version 11:
GlobalDecl GD;
if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(Decl)) {
GD = GlobalDecl(D, Ctor_Complete);
} else if (const CXXDestructorDecl *D =
dyn_cast<CXXDestructorDecl>(Decl)) {
GD = GlobalDecl(D, Dtor_Complete);
} else {
GD = GlobalDecl(Decl);
}
Ctx->mangleName(GD, Out);
#else
if (const CXXConstructorDecl *D = dyn_cast<CXXConstructorDecl>(Decl)) {
Ctx->mangleCXXCtor(D, CXXCtorType::Ctor_Complete, Out);
} else if (const CXXDestructorDecl *D =
dyn_cast<CXXDestructorDecl>(Decl)) {
Ctx->mangleCXXDtor(D, CXXDtorType::Dtor_Complete, Out);
} else {
Ctx->mangleName(Decl, Out);
}
#endif
return Out.str().str();
} else {
return std::string("V_") + mangleLocation(Decl->getLocation()) +
std::string("_") + hash(std::string(Decl->getName()));
}
} else if (isa<TagDecl>(Decl) || isa<ObjCInterfaceDecl>(Decl)) {
if (!Decl->getIdentifier()) {
// Anonymous.
return std::string("T_") + mangleLocation(Decl->getLocation());
}
return std::string("T_") + mangleQualifiedName(getQualifiedName(Decl));
} else if (isa<TypedefNameDecl>(Decl)) {
if (!Decl->getIdentifier()) {
// Anonymous.
return std::string("TA_") + mangleLocation(Decl->getLocation());
}
return std::string("TA_") + mangleQualifiedName(getQualifiedName(Decl));
} else if (isa<NamespaceDecl>(Decl) || isa<NamespaceAliasDecl>(Decl)) {
if (!Decl->getIdentifier()) {
// Anonymous.
return std::string("NS_") + mangleLocation(Decl->getLocation());
}
return std::string("NS_") + mangleQualifiedName(getQualifiedName(Decl));
} else if (const ObjCIvarDecl *D2 = dyn_cast<ObjCIvarDecl>(Decl)) {
const ObjCInterfaceDecl *Iface = D2->getContainingInterface();
return std::string("F_<") + getMangledName(Ctx, Iface) + ">_" +
D2->getNameAsString();
} else if (const FieldDecl *D2 = dyn_cast<FieldDecl>(Decl)) {
const RecordDecl *Record = D2->getParent();
return std::string("F_<") + getMangledName(Ctx, Record) + ">_" +
D2->getNameAsString();
} else if (const EnumConstantDecl *D2 = dyn_cast<EnumConstantDecl>(Decl)) {
const DeclContext *DC = Decl->getDeclContext();
if (const NamedDecl *Named = dyn_cast<NamedDecl>(DC)) {
return std::string("E_<") + getMangledName(Ctx, Named) + ">_" +
D2->getNameAsString();
}
}
assert(false);
return std::string("");
}
void debugLocation(SourceLocation Loc) {
std::string S = locationToString(Loc);
StringRef Filename = SM.getFilename(Loc);
printf("--> %s %s\n", std::string(Filename).c_str(), S.c_str());
}
void debugRange(SourceRange Range) {
printf("Range\n");
debugLocation(Range.getBegin());
debugLocation(Range.getEnd());
}
public:
IndexConsumer(CompilerInstance &CI)
: CI(CI), SM(CI.getSourceManager()), LO(CI.getLangOpts()),
CurMangleContext(nullptr), AstContext(nullptr),
ConcatInfo(CI.getPreprocessor()), CurDeclContext(nullptr),
TemplateStack(nullptr) {
CI.getPreprocessor().addPPCallbacks(make_unique<PreprocessorHook>(this));
CI.getPreprocessor().setTokenWatcher(
[this](const auto &token) { onTokenLexed(token); });
}
virtual DiagnosticConsumer *clone(DiagnosticsEngine &Diags) const {
return new IndexConsumer(CI);
}
#if !defined(_WIN32) && !defined(_WIN64)
struct AutoTime {
AutoTime(double *Counter) : Counter(Counter), Start(time()) {}
~AutoTime() {
if (Start) {
*Counter += time() - Start;
}
}
void stop() {
*Counter += time() - Start;
Start = 0;
}
double *Counter;
double Start;
};
#endif
// All we need is to follow the final declaration.
virtual void HandleTranslationUnit(ASTContext &Ctx) {
CurMangleContext =
clang::ItaniumMangleContext::create(Ctx, CI.getDiagnostics());
AstContext = &Ctx;
Resolver = std::make_unique<clangd::HeuristicResolver>(Ctx);
TraverseDecl(Ctx.getTranslationUnitDecl());
// Emit the JSON data for all files now.
std::map<FileID, std::unique_ptr<FileInfo>>::iterator It;
for (It = FileMap.begin(); It != FileMap.end(); It++) {
if (!It->second->Interesting) {
continue;
}
FileInfo &Info = *It->second;
std::string Filename = Outdir + Info.Realname;
std::string SrcFilename =
Info.Generated ? Objdir + Info.Realname.substr(GENERATED.length())
: Srcdir + PATHSEP_STRING + Info.Realname;
ensurePath(Filename);
// We lock the output file in case some other clang process is trying to
// write to it at the same time.
AutoLockFile Lock(SrcFilename, Filename);
if (!Lock.success()) {
fprintf(stderr, "Unable to lock file %s\n", Filename.c_str());
exit(1);
}
// Merge our results with the existing lines from the output file.
// This ensures that header files that are included multiple times
// in different ways are analyzed completely.
std::ifstream Fin(Filename.c_str(), std::ios::in | std::ios::binary);
FILE *OutFp = Lock.openTmp();
if (!OutFp) {
fprintf(stderr, "Unable to open tmp out file for %s\n",
Filename.c_str());
exit(1);
}
// Sort our new results and get an iterator to them
std::sort(Info.Output.begin(), Info.Output.end());
std::vector<std::string>::const_iterator NewLinesIter =
Info.Output.begin();
std::string LastNewWritten;
// Loop over the existing (sorted) lines in the analysis output file.
// (The good() check also handles the case where Fin did not exist when we
// went to open it.)
while (Fin.good()) {
std::string OldLine;
std::getline(Fin, OldLine);
// Skip blank lines.
if (OldLine.length() == 0) {
continue;
}
// We need to put the newlines back that getline() eats.
OldLine.push_back('\n');
// Write any results from Info.Output that are lexicographically
// smaller than OldLine (read from the existing file), but make sure
// to skip duplicates. Keep advancing NewLinesIter until we reach an
// entry that is lexicographically greater than OldLine.
for (; NewLinesIter != Info.Output.end(); NewLinesIter++) {
if (*NewLinesIter > OldLine) {
break;
}
if (*NewLinesIter == OldLine) {
continue;
}
if (*NewLinesIter == LastNewWritten) {
// dedupe the new entries being written
continue;
}
if (fwrite(NewLinesIter->c_str(), NewLinesIter->length(), 1, OutFp) !=
1) {
fprintf(stderr,
"Unable to write %zu bytes[1] to tmp output file for %s\n",
NewLinesIter->length(), Filename.c_str());
exit(1);
}
LastNewWritten = *NewLinesIter;
}
// Write the entry read from the existing file.
if (fwrite(OldLine.c_str(), OldLine.length(), 1, OutFp) != 1) {
fprintf(stderr,
"Unable to write %zu bytes[2] to tmp output file for %s\n",
OldLine.length(), Filename.c_str());
exit(1);
}
}
// We finished reading from Fin
Fin.close();
// Finish iterating our new results, discarding duplicates
for (; NewLinesIter != Info.Output.end(); NewLinesIter++) {
if (*NewLinesIter == LastNewWritten) {
continue;
}
if (fwrite(NewLinesIter->c_str(), NewLinesIter->length(), 1, OutFp) !=
1) {
fprintf(stderr,
"Unable to write %zu bytes[3] to tmp output file for %s\n",
NewLinesIter->length(), Filename.c_str());
exit(1);
}
LastNewWritten = *NewLinesIter;
}
// Done writing all the things, close it and replace the old output file
// with the new one.
fclose(OutFp);
if (!Lock.moveTmp()) {
fprintf(stderr,
"Unable to move tmp output file into place for %s (err %d)\n",
Filename.c_str(), errno);
exit(1);
}
}
}
// Unfortunately, we have to override all these methods in order to track the
// context we're inside.
bool TraverseEnumDecl(EnumDecl *D) {
AutoSetContext Asc(this, D);
return Super::TraverseEnumDecl(D);
}
bool TraverseRecordDecl(RecordDecl *D) {
AutoSetContext Asc(this, D);
return Super::TraverseRecordDecl(D);
}
bool TraverseCXXRecordDecl(CXXRecordDecl *D) {
AutoSetContext Asc(this, D);
return Super::TraverseCXXRecordDecl(D);
}
bool TraverseFunctionDecl(FunctionDecl *D) {
AutoSetContext Asc(this, D);
const FunctionDecl *Def;
// (See the larger AutoTemplateContext comment for more information.) If a
// method on a templated class is declared out-of-line, we need to analyze
// the definition inside the scope of the template or else we won't properly
// handle member access on the templated type.
if (TemplateStack && D->isDefined(Def) && Def && D != Def) {
const auto _ = ValueRollback(CurDeclContext, nullptr);
TraverseFunctionDecl(const_cast<FunctionDecl *>(Def));
}
return Super::TraverseFunctionDecl(D);
}
bool TraverseCXXMethodDecl(CXXMethodDecl *D) {
AutoSetContext Asc(this, D);
const FunctionDecl *Def;
// See TraverseFunctionDecl.
if (TemplateStack && D->isDefined(Def) && Def && D != Def) {
const auto _ = ValueRollback(CurDeclContext, nullptr);
TraverseFunctionDecl(const_cast<FunctionDecl *>(Def));
}
return Super::TraverseCXXMethodDecl(D);
}
bool TraverseCXXConstructorDecl(CXXConstructorDecl *D) {
AutoSetContext Asc(this, D, /*VisitImplicit=*/true);
const FunctionDecl *Def;
// See TraverseFunctionDecl.
if (TemplateStack && D->isDefined(Def) && Def && D != Def) {
const auto _ = ValueRollback(CurDeclContext, nullptr);
TraverseFunctionDecl(const_cast<FunctionDecl *>(Def));
}
return Super::TraverseCXXConstructorDecl(D);
}
bool TraverseCXXConversionDecl(CXXConversionDecl *D) {
AutoSetContext Asc(this, D);
const FunctionDecl *Def;
// See TraverseFunctionDecl.
if (TemplateStack && D->isDefined(Def) && Def && D != Def) {
const auto _ = ValueRollback(CurDeclContext, nullptr);
TraverseFunctionDecl(const_cast<FunctionDecl *>(Def));
}
return Super::TraverseCXXConversionDecl(D);
}
bool TraverseCXXDestructorDecl(CXXDestructorDecl *D) {
AutoSetContext Asc(this, D);
const FunctionDecl *Def;
// See TraverseFunctionDecl.
if (TemplateStack && D->isDefined(Def) && Def && D != Def) {
const auto _ = ValueRollback(CurDeclContext, nullptr);
TraverseFunctionDecl(const_cast<FunctionDecl *>(Def));
}
return Super::TraverseCXXDestructorDecl(D);
}
bool TraverseLambdaExpr(LambdaExpr *E) {
AutoSetContext Asc(this, nullptr, true);
return Super::TraverseLambdaExpr(E);
}
// Used to keep track of the context in which a token appears.
struct Context {
// Ultimately this becomes the "context" JSON property.
std::string Name;
// Ultimately this becomes the "contextsym" JSON property.
std::string Symbol;
Context() {}
Context(std::string Name, std::string Symbol)
: Name(Name), Symbol(Symbol) {}
};
Context translateContext(NamedDecl *D) {
const FunctionDecl *F = dyn_cast<FunctionDecl>(D);
if (F && F->isTemplateInstantiation()) {
D = F->getTemplateInstantiationPattern();
}
return Context(D->getQualifiedNameAsString(),
getMangledName(CurMangleContext, D));
}
Context getContext(SourceLocation Loc) {
if (SM.isMacroBodyExpansion(Loc)) {
// If we're inside a macro definition, we don't return any context. It
// will probably not be what the user expects if we do.
return Context();
}
AutoSetContext *Ctxt = CurDeclContext;
while (Ctxt) {
if (Ctxt->Decl) {
return translateContext(Ctxt->Decl);
}
Ctxt = Ctxt->Prev;
}
return Context();
}
// Similar to GetContext(SourceLocation), but it skips the declaration passed
// in. This is useful if we want the context of a declaration that's already
// on the stack.
Context getContext(Decl *D) {
if (SM.isMacroBodyExpansion(D->getLocation())) {
// If we're inside a macro definition, we don't return any context. It
// will probably not be what the user expects if we do.
return Context();
}
AutoSetContext *Ctxt = CurDeclContext;
while (Ctxt) {
if (Ctxt->Decl && Ctxt->Decl != D) {
return translateContext(Ctxt->Decl);
}
Ctxt = Ctxt->Prev;
}
return Context();
}
// Searches for the closest CurDeclContext parent that is a function template
// instantiation
const FunctionDecl *getCurrentFunctionTemplateInstantiation() {
const auto *Ctxt = CurDeclContext;
while (Ctxt) {
if (Ctxt->Decl && isa<FunctionDecl>(Ctxt->Decl)) {
const auto *F = Ctxt->Decl->getAsFunction();
if (F->isTemplateInstantiation())
return F;
}
Ctxt = Ctxt->Prev;
}
return nullptr;
}
// Analyzing template code is tricky. Suppose we have this code:
//
// template<class T>
// bool Foo(T* ptr) { return T::StaticMethod(ptr); }
//
// If we analyze the body of Foo without knowing the type T, then we will not
// be able to generate any information for StaticMethod. However, analyzing
// Foo for every possible instantiation is inefficient and it also generates
// too much data in some cases. For example, the following code would generate
// one definition of Baz for every instantiation, which is undesirable:
//
// template<class T>
// class Bar { struct Baz { ... }; };
//
// To solve this problem, we analyze templates only once. We do so in a
// GatherDependent mode where we look for "dependent scoped member
// expressions" (i.e., things like StaticMethod). We keep track of the
// locations of these expressions. If we find one or more of them, we analyze
// the template for each instantiation, in an AnalyzeDependent mode. This mode
// ignores all source locations except for the ones where we found dependent
// scoped member expressions before. For these locations, we generate a
// separate JSON result for each instantiation.
//
// We inherit our parent's mode if it is exists. This is because if our
// parent is in analyze mode, it means we've already lived a full life in
// gather mode and we must not restart in gather mode or we'll cause the
// indexer to visit EVERY identifier, which is way too much data.
struct AutoTemplateContext {
AutoTemplateContext(IndexConsumer *Self)
: Self(Self), CurMode(Self->TemplateStack ? Self->TemplateStack->CurMode
: Mode::GatherDependent),
Parent(Self->TemplateStack) {
Self->TemplateStack = this;
}
~AutoTemplateContext() { Self->TemplateStack = Parent; }
// We traverse templates in two modes:
enum class Mode {
// Gather mode does not traverse into specializations. It looks for
// locations where it would help to have more info from template
// specializations.
GatherDependent,
// Analyze mode traverses into template specializations and records
// information about token locations saved in gather mode.
AnalyzeDependent,
};
// We found a dependent scoped member expression! Keep track of it for
// later.
void visitDependent(SourceLocation Loc) {
if (CurMode == Mode::AnalyzeDependent) {
return;
}
DependentLocations.insert(Loc.getRawEncoding());
if (Parent) {
Parent->visitDependent(Loc);
}
}
bool inGatherMode() { return CurMode == Mode::GatherDependent; }
// Do we need to perform the extra AnalyzeDependent passes (one per
// instantiation)?
bool needsAnalysis() const {
if (!DependentLocations.empty()) {
return true;
}
if (Parent) {
return Parent->needsAnalysis();
}
return false;
}
void switchMode() { CurMode = Mode::AnalyzeDependent; }
// Do we want to analyze each template instantiation separately?
bool shouldVisitTemplateInstantiations() const {
if (CurMode == Mode::AnalyzeDependent) {
return true;
}
if (Parent) {
return Parent->shouldVisitTemplateInstantiations();
}
return false;
}
// For a given expression/statement, should we emit JSON data for it?
bool shouldVisit(SourceLocation Loc) {
if (CurMode == Mode::GatherDependent) {
return true;
}
if (DependentLocations.find(Loc.getRawEncoding()) !=
DependentLocations.end()) {
return true;
}
if (Parent) {
return Parent->shouldVisit(Loc);
}
return false;
}
private:
IndexConsumer *Self;
Mode CurMode;
std::unordered_set<unsigned> DependentLocations;
AutoTemplateContext *Parent;
};
AutoTemplateContext *TemplateStack;
std::unordered_multimap<const FunctionDecl *, const Stmt *>
ForwardingTemplates;
std::unordered_set<unsigned> ForwardedTemplateLocations;
bool shouldVisitTemplateInstantiations() const {
if (TemplateStack) {
return TemplateStack->shouldVisitTemplateInstantiations();
}
return false;
}
bool shouldVisitImplicitCode() const {
return CurDeclContext && CurDeclContext->VisitImplicit;
}
// We don't want to traverse all specializations everytime we find a forward
// declaration, so only traverse specializations related to an actual
// definition.
//
// ```
// // This is the canonical declaration for Maybe but isn't really useful.
// template <typename T>
// struct Maybe;
//
// // This is another ClassTemplateDecl, but not the canonical one, where we
// // actually have the definition. This is the one we want to traverse.
// template <typename T>
// struct Maybe {
// // This is both the canonical declaration and the definition for
// // inline_method and we want to traverse it.
// template <typename... Args>
// T *inline_method(Args&&... args) {
// // definition
// }
//
// // This is the canonical declaration, TraverseFunctionTemplateDecl
// // traverses its out of line definition too.
// template <typename... Args>
// T *out_of_line_method(Args&&... args);
// }
//
// // This is the definition for Maybe<T>::out_of_line_method<Args...>
// // It is traversed when calling TraverseFunctionTemplateDecl on the
// // canonical declaration.
// template <typename T>
// template <typename... Args>
// T *maybe(Args&&... args) {
// // definition
// }
// ```
//
// So:
// - for class templates we check isThisDeclarationADefinition
// - for function templates we check isCanonicalDecl
bool TraverseClassTemplateDecl(ClassTemplateDecl *D) {
AutoTemplateContext Atc(this);
Super::TraverseClassTemplateDecl(D);
// Gather dependent locations from partial specializations too
SmallVector<ClassTemplatePartialSpecializationDecl *> PS;
D->getPartialSpecializations(PS);
for (auto *Spec : PS) {
for (auto *Rd : Spec->redecls()) {
TraverseDecl(Rd);
}
}
if (!Atc.needsAnalysis()) {
return true;
}
Atc.switchMode();
if (!D->isThisDeclarationADefinition())
return true;
for (auto *Spec : D->specializations()) {
for (auto *Rd : Spec->redecls()) {
// We don't want to visit injected-class-names in this traversal.
if (cast<CXXRecordDecl>(Rd)->isInjectedClassName())
continue;
TraverseDecl(Rd);
}
}
return true;
}
// See also comment above TraverseClassTemplateDecl
bool TraverseFunctionTemplateDecl(FunctionTemplateDecl *D) {
AutoTemplateContext Atc(this);
if (Atc.inGatherMode()) {
Super::TraverseFunctionTemplateDecl(D);
}
if (!Atc.needsAnalysis()) {
return true;
}
Atc.switchMode();
if (!D->isCanonicalDecl())
return true;
for (auto *Spec : D->specializations()) {
for (auto *Rd : Spec->redecls()) {
TraverseDecl(Rd);
}
}
return true;
}
bool shouldVisit(SourceLocation Loc) {
if (TemplateStack) {
return TemplateStack->shouldVisit(Loc);
}
return true;
}
enum {
// Flag to omit the identifier from being cross-referenced across files.
// This is usually desired for local variables.
NoCrossref = 1 << 0,
// Flag to indicate the token with analysis data is not an identifier.
// Indicates
// we want to skip the check that tries to ensure a sane identifier token.
NotIdentifierToken = 1 << 1,
// This indicates that the end of the provided SourceRange is valid and
// should be respected. If this flag is not set, the visitIdentifier
// function should use only the start of the SourceRange and auto-detect
// the end based on whatever token is found at the start.
LocRangeEndValid = 1 << 2,
// Indicates this record was generated through heuristic template
// resolution.
Heuristic = 1 << 3,
};
void emitStructuredRecordInfo(llvm::json::OStream &J, SourceLocation Loc,
const RecordDecl *decl) {
J.attribute("kind",
TypeWithKeyword::getTagTypeKindName(decl->getTagKind()));
const ASTContext &C = *AstContext;
const ASTRecordLayout &Layout = C.getASTRecordLayout(decl);
J.attribute("sizeBytes", Layout.getSize().getQuantity());
emitBindingAttributes(J, *decl);
auto cxxDecl = dyn_cast<CXXRecordDecl>(decl);
if (cxxDecl) {
if (Layout.hasOwnVFPtr()) {
// Encode the size of virtual function table pointer
// instead of just true/false, for 2 reasons:
// * having the size here is easier for the consumer
// * the size string 4/8 is shorter than true/false in the analysis
// file
const QualType ptrType = C.getUIntPtrType();
J.attribute("ownVFPtrBytes",
C.getTypeSizeInChars(ptrType).getQuantity());
}
J.attributeBegin("supers");
J.arrayBegin();
for (const CXXBaseSpecifier &Base : cxxDecl->bases()) {
const CXXRecordDecl *BaseDecl = Base.getType()->getAsCXXRecordDecl();
J.objectBegin();
J.attribute("sym", getMangledName(CurMangleContext, BaseDecl));
if (Base.isVirtual()) {
CharUnits superOffsetBytes = Layout.getVBaseClassOffset(BaseDecl);
J.attribute("offsetBytes", superOffsetBytes.getQuantity());
} else {
CharUnits superOffsetBytes = Layout.getBaseClassOffset(BaseDecl);
J.attribute("offsetBytes", superOffsetBytes.getQuantity());
}
J.attributeBegin("props");
J.arrayBegin();
if (Base.isVirtual()) {
J.value("virtual");
}
J.arrayEnd();
J.attributeEnd();
J.objectEnd();
}
J.arrayEnd();
J.attributeEnd();
J.attributeBegin("methods");
J.arrayBegin();
for (const CXXMethodDecl *MethodDecl : cxxDecl->methods()) {
J.objectBegin();
J.attribute("pretty", getQualifiedName(MethodDecl));
J.attribute("sym", getMangledName(CurMangleContext, MethodDecl));
// TODO: Better figure out what to do for non-isUserProvided methods
// which means there's potentially semantic data that doesn't correspond
// to a source location in the source. Should we be emitting
// structured info for those when we're processing the class here?
J.attributeBegin("props");
J.arrayBegin();
if (MethodDecl->isStatic()) {
J.value("static");
}
if (MethodDecl->isInstance()) {
J.value("instance");
}
if (MethodDecl->isVirtual()) {
J.value("virtual");
}
if (MethodDecl->isUserProvided()) {
J.value("user");
}
if (MethodDecl->isDefaulted()) {
J.value("defaulted");
}
if (MethodDecl->isDeleted()) {
J.value("deleted");
}
if (MethodDecl->isConstexpr()) {
J.value("constexpr");
}
J.arrayEnd();
J.attributeEnd();
J.objectEnd();
}
J.arrayEnd();
J.attributeEnd();
}
FileID structFileID = SM.getFileID(Loc);
J.attributeBegin("fields");
J.arrayBegin();
uint64_t iField = 0;
for (RecordDecl::field_iterator It = decl->field_begin(),
End = decl->field_end();
It != End; ++It, ++iField) {
const FieldDecl &Field = **It;
auto sourceRange =
SM.getExpansionRange(Field.getSourceRange()).getAsRange();
uint64_t localOffsetBits = Layout.getFieldOffset(iField);
CharUnits localOffsetBytes = C.toCharUnitsFromBits(localOffsetBits);
J.objectBegin();
J.attribute("lineRange",
pathAndLineRangeToString(structFileID, sourceRange));
J.attribute("pretty", getQualifiedName(&Field));
J.attribute("sym", getMangledName(CurMangleContext, &Field));
QualType FieldType = Field.getType();
QualType CanonicalFieldType = FieldType.getCanonicalType();
LangOptions langOptions;
PrintingPolicy Policy(langOptions);
Policy.PrintCanonicalTypes = true;
J.attribute("type", CanonicalFieldType.getAsString(Policy));
const TagDecl *tagDecl = CanonicalFieldType->getAsTagDecl();
if (!tagDecl) {
// Try again piercing any pointers/references involved. Note that our
// typesym semantics are dubious-ish and right now crossref just does
// some parsing of "type" itself until we improve this rep.
CanonicalFieldType = CanonicalFieldType->getPointeeType();
if (!CanonicalFieldType.isNull()) {
tagDecl = CanonicalFieldType->getAsTagDecl();
}
}
if (tagDecl) {
J.attribute("typesym", getMangledName(CurMangleContext, tagDecl));
}
J.attribute("offsetBytes", localOffsetBytes.getQuantity());
if (Field.isBitField()) {
J.attributeBegin("bitPositions");
J.objectBegin();
J.attribute("begin",
unsigned(localOffsetBits - C.toBits(localOffsetBytes)));
J.attribute("width", Field.getBitWidthValue(C));
J.objectEnd();
J.attributeEnd();
} else {
// Try and get the field as a record itself so we can know its size, but
// we don't actually want to recurse into it.
if (auto FieldRec = Field.getType()->getAs<RecordType>()) {
auto const &FieldLayout = C.getASTRecordLayout(FieldRec->getDecl());
J.attribute("sizeBytes", FieldLayout.getSize().getQuantity());
} else {
// We were unable to get it as a record, which suggests it's a normal
// type, in which case let's just ask for the type size. (Maybe this
// would also work for the above case too?)
uint64_t typeSizeBits = C.getTypeSize(Field.getType());
CharUnits typeSizeBytes = C.toCharUnitsFromBits(typeSizeBits);
J.attribute("sizeBytes", typeSizeBytes.getQuantity());
}
}
J.objectEnd();
}
J.arrayEnd();
J.attributeEnd();
}
void emitStructuredEnumInfo(llvm::json::OStream &J, const EnumDecl *ED) {
J.attribute("kind", "enum");
}
void emitStructuredEnumConstantInfo(llvm::json::OStream &J,
const EnumConstantDecl *ECD) {
J.attribute("kind", "enumConstant");
}
void emitStructuredFunctionInfo(llvm::json::OStream &J,
const FunctionDecl *decl) {
emitBindingAttributes(J, *decl);
J.attributeBegin("args");
J.arrayBegin();
for (auto param : decl->parameters()) {
J.objectBegin();
J.attribute("name", param->getName());
QualType ArgType = param->getOriginalType();
J.attribute("type", ArgType.getAsString());
QualType CanonicalArgType = ArgType.getCanonicalType();
const TagDecl *canonDecl = CanonicalArgType->getAsTagDecl();
if (!canonDecl) {
// Try again piercing any pointers/references involved. Note that our
// typesym semantics are dubious-ish and right now crossref just does
// some parsing of "type" itself until we improve this rep.
CanonicalArgType = CanonicalArgType->getPointeeType();
if (!CanonicalArgType.isNull()) {
canonDecl = CanonicalArgType->getAsTagDecl();
}
}
if (canonDecl) {
J.attribute("typesym", getMangledName(CurMangleContext, canonDecl));
}
J.objectEnd();
}
J.arrayEnd();
J.attributeEnd();
auto cxxDecl = dyn_cast<CXXMethodDecl>(decl);
if (cxxDecl) {
J.attribute("kind", "method");
if (auto parentDecl = cxxDecl->getParent()) {
J.attribute("parentsym", getMangledName(CurMangleContext, parentDecl));
}
J.attributeBegin("overrides");
J.arrayBegin();
for (const CXXMethodDecl *MethodDecl : cxxDecl->overridden_methods()) {
J.objectBegin();
// TODO: Make sure we're doing template traversals appropriately...
// findOverriddenMethods (now removed) liked to do:
// if (Decl->isTemplateInstantiation()) {
// Decl =
// dyn_cast<CXXMethodDecl>(Decl->getTemplateInstantiationPattern());
// }
// I think our pre-emptive dereferencing/avoidance of templates may
// protect us from this, but it needs more investigation.
J.attribute("sym", getMangledName(CurMangleContext, MethodDecl));
J.objectEnd();
}
J.arrayEnd();
J.attributeEnd();
} else {
J.attribute("kind", "function");
}
// ## Props
J.attributeBegin("props");
J.arrayBegin();
// some of these are only possible on a CXXMethodDecl, but we want them all
// in the same array, so condition these first ones.
if (cxxDecl) {
if (cxxDecl->isStatic()) {
J.value("static");
}
if (cxxDecl->isInstance()) {
J.value("instance");
}
if (cxxDecl->isVirtual()) {
J.value("virtual");
}
if (cxxDecl->isUserProvided()) {
J.value("user");
}
}
if (decl->isDefaulted()) {
J.value("defaulted");
}
if (decl->isDeleted()) {
J.value("deleted");
}
if (decl->isConstexpr()) {
J.value("constexpr");
}
J.arrayEnd();
J.attributeEnd();
}
/**
* Emit structured info for a field. Right now the intent is for this to just
* be a pointer to its parent's structured info with this method entirely
* avoiding getting the ASTRecordLayout.
*
* TODO: Give more thought on where to locate the canonical info on fields and
* how to normalize their exposure over the web. We could relink the info
* both at cross-reference time and web-server lookup time. This is also
* called out in `analysis.md`.
*/
void emitStructuredFieldInfo(llvm::json::OStream &J, const FieldDecl *decl) {
J.attribute("kind", "field");
// XXX the call to decl::getParent will assert below for ObjCIvarDecl
// instances because their DecContext is not a RecordDecl. So just bail
// for now.
// TODO: better support ObjC.
if (!dyn_cast<ObjCIvarDecl>(decl)) {
if (auto parentDecl = decl->getParent()) {
J.attribute("parentsym", getMangledName(CurMangleContext, parentDecl));
}
}
}
/**
* Emit structured info for a variable if it is a static class member.
*/
void emitStructuredVarInfo(llvm::json::OStream &J, const VarDecl *decl) {
const auto *parentDecl =
dyn_cast_or_null<RecordDecl>(decl->getDeclContext());
J.attribute("kind", "field");
if (parentDecl) {
J.attribute("parentsym", getMangledName(CurMangleContext, parentDecl));
}
emitBindingAttributes(J, *decl);
}
void emitStructuredInfo(SourceLocation Loc, const NamedDecl *decl) {
std::string json_str;
llvm::raw_string_ostream ros(json_str);
llvm::json::OStream J(ros);
// Start the top-level object.
J.objectBegin();
unsigned StartOffset = SM.getFileOffset(Loc);
unsigned EndOffset =
StartOffset + Lexer::MeasureTokenLength(Loc, SM, CI.getLangOpts());
J.attribute("loc", locationToString(Loc, EndOffset - StartOffset));
J.attribute("structured", 1);
J.attribute("pretty", getQualifiedName(decl));
J.attribute("sym", getMangledName(CurMangleContext, decl));
if (const RecordDecl *RD = dyn_cast<RecordDecl>(decl)) {
emitStructuredRecordInfo(J, Loc, RD);
} else if (const EnumDecl *ED = dyn_cast<EnumDecl>(decl)) {
emitStructuredEnumInfo(J, ED);
} else if (const EnumConstantDecl *ECD = dyn_cast<EnumConstantDecl>(decl)) {
emitStructuredEnumConstantInfo(J, ECD);
} else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) {
emitStructuredFunctionInfo(J, FD);
} else if (const FieldDecl *FD = dyn_cast<FieldDecl>(decl)) {
emitStructuredFieldInfo(J, FD);
} else if (const VarDecl *VD = dyn_cast<VarDecl>(decl)) {
emitStructuredVarInfo(J, VD);
}
// End the top-level object.
J.objectEnd();
FileInfo *F = getFileInfo(Loc);
// we want a newline.
ros << '\n';
F->Output.push_back(std::move(ros.str()));
}
// XXX Type annotating.
// QualType is the type class. It has helpers like TagDecl via getAsTagDecl.
// ValueDecl exposes a getType() method.
//
// Arguably it makes sense to only expose types that Searchfox has definitions
// for as first-class. Probably the way to go is like context/contextsym.
// We expose a "type" which is just a human-readable string which has no
// semantic purposes and is just a display string, plus then a "typesym" which
// we expose if we were able to map the type.
//
// Other meta-info: field offsets. Ancestor types.
// This is the only function that emits analysis JSON data. It should be
// called for each identifier that corresponds to a symbol.
void visitIdentifier(const char *Kind, const char *SyntaxKind,
llvm::StringRef QualName, SourceRange LocRange,
std::string Symbol, QualType MaybeType = QualType(),
Context TokenContext = Context(), int Flags = 0,
SourceRange PeekRange = SourceRange(),
SourceRange NestingRange = SourceRange(),
std::vector<SourceRange> *ArgRanges = nullptr) {
SourceLocation Loc = LocRange.getBegin();
// Also visit the spelling site.
SourceLocation SpellingLoc = SM.getSpellingLoc(Loc);
if (SpellingLoc != Loc) {
visitIdentifier(Kind, SyntaxKind, QualName, SpellingLoc, Symbol,
MaybeType, TokenContext, Flags, PeekRange, NestingRange,
ArgRanges);
}
SourceLocation ExpansionLoc = SM.getExpansionLoc(Loc);
normalizeLocation(&ExpansionLoc);
if (!shouldVisit(ExpansionLoc)) {
return;
}
if (ExpansionLoc != Loc)
Flags = Flags & ~LocRangeEndValid;
// Find the file positions corresponding to the token.
unsigned StartOffset = SM.getFileOffset(ExpansionLoc);
unsigned EndOffset =
(Flags & LocRangeEndValid)
? SM.getFileOffset(LocRange.getEnd())
: StartOffset +
Lexer::MeasureTokenLength(ExpansionLoc, SM, CI.getLangOpts());
std::string LocStr =
locationToString(ExpansionLoc, EndOffset - StartOffset);
std::string RangeStr =
locationToString(ExpansionLoc, EndOffset - StartOffset);
std::string PeekRangeStr;
if (!(Flags & NotIdentifierToken)) {
// Get the token's characters so we can make sure it's a valid token.
const char *StartChars = SM.getCharacterData(ExpansionLoc);
std::string Text(StartChars, EndOffset - StartOffset);
if (!isValidIdentifier(Text)) {
return;
}
}
FileInfo *F = getFileInfo(ExpansionLoc);
if (!(Flags & NoCrossref)) {
std::string json_str;
llvm::raw_string_ostream ros(json_str);
llvm::json::OStream J(ros);
// Start the top-level object.
J.objectBegin();
J.attribute("loc", LocStr);
J.attribute("target", 1);
J.attribute("kind", Kind);
J.attribute("pretty", QualName.data());
J.attribute("sym", Symbol);
if (!TokenContext.Name.empty()) {
J.attribute("context", TokenContext.Name);
}
if (!TokenContext.Symbol.empty()) {
J.attribute("contextsym", TokenContext.Symbol);
}
if (PeekRange.isValid()) {
PeekRangeStr = lineRangeToString(PeekRange);
if (!PeekRangeStr.empty()) {
J.attribute("peekRange", PeekRangeStr);
}
}
if (ArgRanges) {
J.attributeBegin("argRanges");
J.arrayBegin();
for (auto range : *ArgRanges) {
std::string ArgRangeStr = fullRangeToString(range);
if (!ArgRangeStr.empty()) {
J.value(ArgRangeStr);
}
}
J.arrayEnd();
J.attributeEnd();
}
// End the top-level object.
J.objectEnd();
// we want a newline.
ros << '\n';
F->Output.push_back(std::move(ros.str()));
}
// Generate a single "source":1 for all the symbols. If we search from here,
// we want to union the results for every symbol in `symbols`.
std::string json_str;
llvm::raw_string_ostream ros(json_str);
llvm::json::OStream J(ros);
// Start the top-level object.
J.objectBegin();
J.attribute("loc", RangeStr);
J.attribute("source", 1);
if (NestingRange.isValid()) {
std::string NestingRangeStr = fullRangeToString(NestingRange);
if (!NestingRangeStr.empty()) {
J.attribute("nestingRange", NestingRangeStr);
}
}
std::string Syntax;
if (Flags & NoCrossref) {
J.attribute("syntax", "");
} else {
Syntax = Kind;
Syntax.push_back(',');
Syntax.append(SyntaxKind);
J.attribute("syntax", Syntax);
}
if (!MaybeType.isNull()) {
J.attribute("type", MaybeType.getAsString());
QualType canonical = MaybeType.getCanonicalType();
const TagDecl *decl = canonical->getAsTagDecl();
if (!decl) {
// Try again piercing any pointers/references involved. Note that our
// typesym semantics are dubious-ish and right now crossref just does
// some parsing of "type" itself until we improve this rep.
canonical = canonical->getPointeeType();
if (!canonical.isNull()) {
decl = canonical->getAsTagDecl();
}
}
if (decl) {
std::string Mangled = getMangledName(CurMangleContext, decl);
J.attribute("typesym", Mangled);
}
}
std::string Pretty(SyntaxKind);
Pretty.push_back(' ');
Pretty.append(QualName.data());
J.attribute("pretty", Pretty);
J.attribute("sym", Symbol);
if (Flags & NoCrossref) {
J.attribute("no_crossref", 1);
}
if (Flags & Heuristic) {
J.attributeBegin("confidence");
J.arrayBegin();
J.value("cppTemplateHeuristic");
J.arrayEnd();
J.attributeEnd();
}
if (ArgRanges) {
J.attributeBegin("argRanges");
J.arrayBegin();
for (auto range : *ArgRanges) {
std::string ArgRangeStr = fullRangeToString(range);
if (!ArgRangeStr.empty()) {
J.value(ArgRangeStr);
}
}
J.arrayEnd();
J.attributeEnd();
}
const auto macro = MacroMaps.find(ExpansionLoc);
if (macro != MacroMaps.end()) {
const auto ¯oInfo = macro->second;
if (macroInfo.Symbol == Symbol) {
J.attributeBegin("expandsTo");
J.objectBegin();
J.attributeBegin(macroInfo.Key);
J.objectBegin();
J.attribute("", macroInfo.Expansion); // "" is the platform key,
// populated by the merge step
J.objectEnd();
J.attributeEnd();
J.objectEnd();
J.attributeEnd();
} else {
const auto it = macroInfo.TokenLocations.find(Loc);
if (it != macroInfo.TokenLocations.end()) {
J.attributeBegin("inExpansionAt");
J.objectBegin();
J.attributeBegin(macroInfo.Key);
J.objectBegin();
J.attributeBegin(
""); // "" is the platform key, populated by the merge step
J.arrayBegin();
J.value(it->second);
J.arrayEnd();
J.attributeEnd();
J.objectEnd();
J.attributeEnd();
J.objectEnd();
J.attributeEnd();
}
}
}
// End the top-level object.
J.objectEnd();
// we want a newline.
ros << '\n';
F->Output.push_back(std::move(ros.str()));
}
void normalizeLocation(SourceLocation *Loc) {
*Loc = SM.getSpellingLoc(*Loc);
}
// For cases where the left-brace is not directly accessible from the AST,
// helper to use the lexer to find the brace. Make sure you're picking the
// start location appropriately!
SourceLocation findLeftBraceFromLoc(SourceLocation Loc) {
return Lexer::findLocationAfterToken(Loc, tok::l_brace, SM, LO, false);
}
// If the provided statement is compound, return its range.
SourceRange getCompoundStmtRange(Stmt *D) {
if (!D) {
return SourceRange();
}
CompoundStmt *D2 = dyn_cast<CompoundStmt>(D);
if (D2) {
return D2->getSourceRange();
}
return SourceRange();
}
SourceRange getFunctionPeekRange(FunctionDecl *D) {
// We always start at the start of the function decl, which may include the
// return type on a separate line.
SourceLocation Start = D->getBeginLoc();
// By default, we end at the line containing the function's name.
SourceLocation End = D->getLocation();
std::pair<FileID, unsigned> FuncLoc = SM.getDecomposedLoc(End);
// But if there are parameters, we want to include those as well.
for (ParmVarDecl *Param : D->parameters()) {
std::pair<FileID, unsigned> ParamLoc =
SM.getDecomposedLoc(Param->getLocation());
// It's possible there are macros involved or something. We don't include
// the parameters in that case.
if (ParamLoc.first == FuncLoc.first) {
// Assume parameters are in order, so we always take the last one.
End = Param->getEndLoc();
}
}
return SourceRange(Start, End);
}
SourceRange getTagPeekRange(TagDecl *D) {
SourceLocation Start = D->getBeginLoc();
// By default, we end at the line containing the name.
SourceLocation End = D->getLocation();
std::pair<FileID, unsigned> FuncLoc = SM.getDecomposedLoc(End);
if (CXXRecordDecl *D2 = dyn_cast<CXXRecordDecl>(D)) {
// But if there are parameters, we want to include those as well.
for (CXXBaseSpecifier &Base : D2->bases()) {
std::pair<FileID, unsigned> Loc = SM.getDecomposedLoc(Base.getEndLoc());
// It's possible there are macros involved or something. We don't
// include the parameters in that case.
if (Loc.first == FuncLoc.first) {
// Assume parameters are in order, so we always take the last one.
End = Base.getEndLoc();
}
}
}
return SourceRange(Start, End);
}
SourceRange getCommentRange(NamedDecl *D) {
const RawComment *RC = AstContext->getRawCommentForDeclNoCache(D);
if (!RC) {
return SourceRange();
}
return RC->getSourceRange();
}
// Sanity checks that all ranges are in the same file, returning the first if
// they're in different files. Unions the ranges based on which is first.
SourceRange combineRanges(SourceRange Range1, SourceRange Range2) {
if (Range1.isInvalid()) {
return Range2;
}
if (Range2.isInvalid()) {
return Range1;
}
std::pair<FileID, unsigned> Begin1 = SM.getDecomposedLoc(Range1.getBegin());
std::pair<FileID, unsigned> End1 = SM.getDecomposedLoc(Range1.getEnd());
std::pair<FileID, unsigned> Begin2 = SM.getDecomposedLoc(Range2.getBegin());
std::pair<FileID, unsigned> End2 = SM.getDecomposedLoc(Range2.getEnd());
if (End1.first != Begin2.first) {
// Something weird is probably happening with the preprocessor. Just
// return the first range.
return Range1;
}
// See which range comes first.
if (Begin1.second <= End2.second) {
return SourceRange(Range1.getBegin(), Range2.getEnd());
} else {
return SourceRange(Range2.getBegin(), Range1.getEnd());
}
}
// Given a location and a range, returns the range if:
// - The location and the range live in the same file.
// - The range is well ordered (end is not before begin).
// Returns an empty range otherwise.
SourceRange validateRange(SourceLocation Loc, SourceRange Range) {
std::pair<FileID, unsigned> Decomposed = SM.getDecomposedLoc(Loc);
std::pair<FileID, unsigned> Begin = SM.getDecomposedLoc(Range.getBegin());
std::pair<FileID, unsigned> End = SM.getDecomposedLoc(Range.getEnd());
if (Begin.first != Decomposed.first || End.first != Decomposed.first) {
return SourceRange();
}
if (Begin.second >= End.second) {
return SourceRange();
}
return Range;
}
bool VisitNamedDecl(NamedDecl *D) {
SourceLocation Loc = D->getLocation();
if (!isInterestingLocation(Loc)) {
return true;
}
SourceLocation ExpansionLoc = Loc;
if (SM.isMacroBodyExpansion(Loc)) {
ExpansionLoc = SM.getFileLoc(Loc);
}
normalizeLocation(&ExpansionLoc);
if (isa<ParmVarDecl>(D) && !D->getDeclName().getAsIdentifierInfo()) {
// Unnamed parameter in function proto.
return true;
}
int Flags = 0;
const char *Kind = "def";
const char *PrettyKind = "?";
bool wasTemplate = false;
SourceRange PeekRange(D->getBeginLoc(), D->getEndLoc());
// The nesting range identifies the left brace and right brace, which
// heavily depends on the AST node type.
SourceRange NestingRange;
QualType qtype = QualType();
if (FunctionDecl *D2 = dyn_cast<FunctionDecl>(D)) {
if (D2->isTemplateInstantiation()) {
wasTemplate = true;
D = D2->getTemplateInstantiationPattern();
}
// We treat pure virtual declarations as definitions.
Kind =
(D2->isThisDeclarationADefinition() || isPure(D2)) ? "def" : "decl";
PrettyKind = "function";
PeekRange = getFunctionPeekRange(D2);
// Only emit the nesting range if:
// - This is a definition AND
// - This isn't a template instantiation. Function templates'
// instantiations can end up as a definition with a Loc at their point
// of declaration but with the CompoundStmt of the template's
// point of definition. This really messes up the nesting range logic.
// At the time of writing this, the test repo's `big_header.h`'s
// `WhatsYourVector_impl::forwardDeclaredTemplateThingInlinedBelow` as
// instantiated by `big_cpp.cpp` triggers this phenomenon.
//
// Note: As covered elsewhere, template processing is tricky and it's
// conceivable that we may change traversal patterns in the future,
// mooting this guard.
if (D2->isThisDeclarationADefinition() &&
!D2->isTemplateInstantiation()) {
// The CompoundStmt range is the brace range.
NestingRange = getCompoundStmtRange(D2->getBody());
}
} else if (TagDecl *D2 = dyn_cast<TagDecl>(D)) {
Kind = D2->isThisDeclarationADefinition() ? "def" : "forward";
PrettyKind = "type";
if (D2->isThisDeclarationADefinition() && D2->getDefinition() == D2) {
PeekRange = getTagPeekRange(D2);
NestingRange = D2->getBraceRange();
} else {
PeekRange = SourceRange();
}
} else if (TypedefNameDecl *D2 = dyn_cast<TypedefNameDecl>(D)) {
Kind = "alias";
PrettyKind = "type";
PeekRange = SourceRange(ExpansionLoc, ExpansionLoc);
qtype = D2->getUnderlyingType();
} else if (VarDecl *D2 = dyn_cast<VarDecl>(D)) {
if (D2->isLocalVarDeclOrParm()) {
Flags = NoCrossref;
}
Kind = D2->isThisDeclarationADefinition() == VarDecl::DeclarationOnly
? "decl"
: "def";
PrettyKind = "variable";
} else if (isa<NamespaceDecl>(D) || isa<NamespaceAliasDecl>(D)) {
Kind = "def";
PrettyKind = "namespace";
PeekRange = SourceRange(ExpansionLoc, ExpansionLoc);
NamespaceDecl *D2 = dyn_cast<NamespaceDecl>(D);
if (D2) {
// There's no exposure of the left brace so we have to find it.
NestingRange = SourceRange(
findLeftBraceFromLoc(D2->isAnonymousNamespace() ? D2->getBeginLoc()
: ExpansionLoc),
D2->getRBraceLoc());
}
} else if (isa<FieldDecl>(D)) {
Kind = "def";
PrettyKind = "field";
} else if (isa<EnumConstantDecl>(D)) {
Kind = "def";
PrettyKind = "enum constant";
} else {
return true;
}
if (ValueDecl *D2 = dyn_cast<ValueDecl>(D)) {
qtype = D2->getType();
}
SourceRange CommentRange = getCommentRange(D);
PeekRange = combineRanges(PeekRange, CommentRange);
PeekRange = validateRange(Loc, PeekRange);
NestingRange = validateRange(Loc, NestingRange);
std::string Symbol = getMangledName(CurMangleContext, D);
// In the case of destructors, Loc might point to the ~ character. In that
// case we want to skip to the name of the class. However, Loc might also
// point to other places that generate destructors, such as a lambda
// (apparently clang 8 creates a destructor declaration for at least some
// lambdas). In that case we'll just drop the declaration.
if (isa<CXXDestructorDecl>(D)) {
PrettyKind = "destructor";
const char *P = SM.getCharacterData(Loc);
if (*P == '~') {
// Advance Loc to the class name
P++;
unsigned Skipped = 1;
while (*P == ' ' || *P == '\t' || *P == '\r' || *P == '\n') {
P++;
Skipped++;
}
Loc = Loc.getLocWithOffset(Skipped);
} else {
return true;
}
}
visitIdentifier(Kind, PrettyKind, getQualifiedName(D), SourceRange(Loc),
Symbol, qtype, getContext(D), Flags, PeekRange,
NestingRange);
// In-progress structured info emission.
if (RecordDecl *D2 = dyn_cast<RecordDecl>(D)) {
if (D2->isThisDeclarationADefinition() &&
// XXX getASTRecordLayout doesn't work for dependent types, so we
// avoid calling into emitStructuredInfo for now if there's a
// dependent type or if we're in any kind of template context. This
// should be re-evaluated once this is working for normal classes and
// we can better evaluate what is useful.
!D2->isDependentType() && !TemplateStack) {
if (auto *D3 = dyn_cast<CXXRecordDecl>(D2)) {
findBindingToJavaClass(*AstContext, *D3);
findBoundAsJavaClasses(*AstContext, *D3);
}
emitStructuredInfo(ExpansionLoc, D2);
}
}
if (EnumDecl *D2 = dyn_cast<EnumDecl>(D)) {
if (D2->isThisDeclarationADefinition() && !D2->isDependentType() &&
!TemplateStack) {
emitStructuredInfo(ExpansionLoc, D2);
}
}
if (EnumConstantDecl *D2 = dyn_cast<EnumConstantDecl>(D)) {
if (!D2->isTemplated() && !TemplateStack) {
emitStructuredInfo(ExpansionLoc, D2);
}
}
if (FunctionDecl *D2 = dyn_cast<FunctionDecl>(D)) {
if ((D2->isThisDeclarationADefinition() || isPure(D2)) &&
// a clause at the top should have generalized and set wasTemplate so
// it shouldn't be the case that isTemplateInstantiation() is true.
!D2->isTemplateInstantiation() && !wasTemplate &&
!D2->isFunctionTemplateSpecialization() && !TemplateStack) {
if (auto *D3 = dyn_cast<CXXMethodDecl>(D2)) {
findBindingToJavaMember(*AstContext, *D3);
} else {
findBindingToJavaFunction(*AstContext, *D2);
}
emitStructuredInfo(ExpansionLoc, D2);
}
}
if (FieldDecl *D2 = dyn_cast<FieldDecl>(D)) {
if (!D2->isTemplated() && !TemplateStack) {
emitStructuredInfo(ExpansionLoc, D2);
}
}
if (VarDecl *D2 = dyn_cast<VarDecl>(D)) {
if (!D2->isTemplated() && !TemplateStack &&
isa<CXXRecordDecl>(D2->getDeclContext())) {
findBindingToJavaConstant(*AstContext, *D2);
emitStructuredInfo(ExpansionLoc, D2);
}
}
return true;
}
bool VisitCXXConstructExpr(const CXXConstructExpr *E) {
// If we are in a template and find a Stmt that was registed in
// ForwardedTemplateLocations, convert the location to an actual Stmt* in
// ForwardingTemplates
if (TemplateStack && !TemplateStack->inGatherMode()) {
if (ForwardedTemplateLocations.find(E->getBeginLoc().getRawEncoding()) !=
ForwardedTemplateLocations.end()) {
if (const auto *currentTemplate =
getCurrentFunctionTemplateInstantiation()) {
ForwardingTemplates.insert({currentTemplate, E});
}
return true;
}
}
SourceLocation Loc = E->getBeginLoc();
if (!isInterestingLocation(Loc)) {
return true;
}
return VisitCXXConstructExpr(E, Loc);
}
bool VisitCXXConstructExpr(const CXXConstructExpr *E, SourceLocation Loc) {
SourceLocation SpellingLoc = SM.getSpellingLoc(Loc);
FunctionDecl *Ctor = E->getConstructor();
if (Ctor->isTemplateInstantiation()) {
Ctor = Ctor->getTemplateInstantiationPattern();
}
std::string Mangled = getMangledName(CurMangleContext, Ctor);
// FIXME: Need to do something different for list initialization.
visitIdentifier("use", "constructor", getQualifiedName(Ctor), Loc, Mangled,
QualType(), getContext(SpellingLoc));
return true;
}
bool VisitCallExpr(CallExpr *E) {
Expr *CalleeExpr = E->getCallee()->IgnoreParenImpCasts();
if (TemplateStack) {
const auto CalleeLocation = [&] {
if (const auto *Member =
dyn_cast<CXXDependentScopeMemberExpr>(CalleeExpr)) {
return Member->getMemberLoc();
}
if (const auto *DeclRef =
dyn_cast<DependentScopeDeclRefExpr>(CalleeExpr)) {
return DeclRef->getLocation();
}
if (const auto *DeclRef = dyn_cast<DeclRefExpr>(CalleeExpr)) {
return DeclRef->getLocation();
}
// Does the right thing for MemberExpr and UnresolvedMemberExpr at
// least.
return CalleeExpr->getExprLoc();
}();
// If we are in a template:
// - when in GatherDependent mode and the callee is type-dependent,
// register it in ForwardedTemplateLocations
// - when in AnalyseDependent mode and the callee is in
// ForwardedTemplateLocations, convert the location to an actual Stmt*
// in ForwardingTemplates
if (TemplateStack->inGatherMode()) {
if (CalleeExpr->isTypeDependent()) {
TemplateStack->visitDependent(CalleeLocation);
ForwardedTemplateLocations.insert(CalleeLocation.getRawEncoding());
}
} else {
if (ForwardedTemplateLocations.find(CalleeLocation.getRawEncoding()) !=
ForwardedTemplateLocations.end()) {
if (const auto *currentTemplate =
getCurrentFunctionTemplateInstantiation()) {
ForwardingTemplates.insert({currentTemplate, E});
}
}
}
}
Decl *Callee = E->getCalleeDecl();
if (!Callee || !FunctionDecl::classof(Callee)) {
return true;
}
const NamedDecl *NamedCallee = dyn_cast<NamedDecl>(Callee);
SourceLocation Loc;
const FunctionDecl *F = dyn_cast<FunctionDecl>(NamedCallee);
if (F->isTemplateInstantiation()) {
NamedCallee = F->getTemplateInstantiationPattern();
}
std::string Mangled = getMangledName(CurMangleContext, NamedCallee);
int Flags = 0;
if (CXXOperatorCallExpr::classof(E)) {
// Just take the first token.
CXXOperatorCallExpr *Op = dyn_cast<CXXOperatorCallExpr>(E);
Loc = Op->getOperatorLoc();
Flags |= NotIdentifierToken;
} else if (MemberExpr::classof(CalleeExpr)) {
MemberExpr *Member = dyn_cast<MemberExpr>(CalleeExpr);
Loc = Member->getMemberLoc();
} else if (DeclRefExpr::classof(CalleeExpr)) {
// We handle this in VisitDeclRefExpr.
return true;
} else {
return true;
}
if (!isInterestingLocation(Loc)) {
return true;
}
if (F->isTemplateInstantiation()) {
VisitForwardedStatements(E, Loc);
}
SourceLocation SpellingLoc = SM.getSpellingLoc(Loc);
std::vector<SourceRange> argRanges;
for (auto argExpr : E->arguments()) {
argRanges.push_back(argExpr->getSourceRange());
}
visitIdentifier("use", "function", getQualifiedName(NamedCallee), Loc,
Mangled, E->getCallReturnType(*AstContext),
getContext(SpellingLoc), Flags, SourceRange(),
SourceRange(), &argRanges);
return true;
}
bool VisitTagTypeLoc(TagTypeLoc L) {
SourceLocation Loc = L.getBeginLoc();
if (!isInterestingLocation(Loc)) {
return true;
}
SourceLocation SpellingLoc = SM.getSpellingLoc(Loc);
TagDecl *Decl = L.getDecl();
std::string Mangled = getMangledName(CurMangleContext, Decl);
visitIdentifier("use", "type", getQualifiedName(Decl), Loc, Mangled,
L.getType(), getContext(SpellingLoc));
return true;
}
bool VisitTypedefTypeLoc(TypedefTypeLoc L) {
SourceLocation Loc = L.getBeginLoc();
if (!isInterestingLocation(Loc)) {
return true;
}
SourceLocation SpellingLoc = SM.getSpellingLoc(Loc);
NamedDecl *Decl = L.getTypedefNameDecl();
std::string Mangled = getMangledName(CurMangleContext, Decl);
visitIdentifier("use", "type", getQualifiedName(Decl), Loc, Mangled,
L.getType(), getContext(SpellingLoc));
return true;
}
bool VisitInjectedClassNameTypeLoc(InjectedClassNameTypeLoc L) {
SourceLocation Loc = L.getBeginLoc();
if (!isInterestingLocation(Loc)) {
return true;
}
SourceLocation SpellingLoc = SM.getSpellingLoc(Loc);
NamedDecl *Decl = L.getDecl();
std::string Mangled = getMangledName(CurMangleContext, Decl);
visitIdentifier("use", "type", getQualifiedName(Decl), Loc, Mangled,
L.getType(), getContext(SpellingLoc));
return true;
}
bool VisitTemplateSpecializationTypeLoc(TemplateSpecializationTypeLoc L) {
SourceLocation Loc = L.getBeginLoc();
if (!isInterestingLocation(Loc)) {
return true;
}
SourceLocation SpellingLoc = SM.getSpellingLoc(Loc);
TemplateDecl *Td = L.getTypePtr()->getTemplateName().getAsTemplateDecl();
if (ClassTemplateDecl *D = dyn_cast<ClassTemplateDecl>(Td)) {
NamedDecl *Decl = D->getTemplatedDecl();
std::string Mangled = getMangledName(CurMangleContext, Decl);
visitIdentifier("use", "type", getQualifiedName(Decl), Loc, Mangled,
QualType(), getContext(SpellingLoc));
} else if (TypeAliasTemplateDecl *D = dyn_cast<TypeAliasTemplateDecl>(Td)) {
NamedDecl *Decl = D->getTemplatedDecl();
std::string Mangled = getMangledName(CurMangleContext, Decl);
visitIdentifier("use", "type", getQualifiedName(Decl), Loc, Mangled,
QualType(), getContext(SpellingLoc));
}
return true;
}
bool VisitDependentNameTypeLoc(DependentNameTypeLoc L) {
SourceLocation Loc = L.getNameLoc();
if (!isInterestingLocation(Loc)) {
return true;
}
for (const NamedDecl *D :
Resolver->resolveDependentNameType(L.getTypePtr())) {
visitHeuristicResult(Loc, D);
}
return true;
}
void VisitForwardedStatements(const Expr *E, SourceLocation Loc) {
// If Loc itself is forwarded to its callers, do nothing
if (ForwardedTemplateLocations.find(Loc.getRawEncoding()) !=
ForwardedTemplateLocations.cend())
return;
// If this is a forwarding template (eg MakeUnique), visit the forwarded
// statements
auto todo = std::stack{std::vector<const Stmt *>{E}};
auto seen = std::unordered_set<const Stmt *>{};
while (!todo.empty()) {
const auto forwarded = std::move(todo.top());
todo.pop();
if (seen.find(forwarded) != seen.end())
continue;
seen.insert(forwarded);
if (const auto *C = dyn_cast<CXXConstructExpr>(forwarded))
VisitCXXConstructExpr(C, Loc);
const Decl *Decl = nullptr;
if (const auto *D = dyn_cast<CallExpr>(forwarded))
Decl = D->getCalleeDecl();
if (const auto *D = dyn_cast<DeclRefExpr>(forwarded))
Decl = D->getDecl();
if (!Decl)
continue;
const auto *F = Decl->getAsFunction();
if (!F)
continue;
if (!F->isTemplateInstantiation())
continue;
const auto [ForwardedBegin, ForwardedEnd] =
ForwardingTemplates.equal_range(F);
for (auto ForwardedIt = ForwardedBegin; ForwardedIt != ForwardedEnd;
++ForwardedIt)
if (seen.find(ForwardedIt->second) == seen.end())
todo.push(ForwardedIt->second);
}
}
bool VisitDeclRefExpr(const DeclRefExpr *E) {
SourceLocation Loc = E->getExprLoc();
if (!isInterestingLocation(Loc)) {
return true;
}
SourceLocation SpellingLoc = SM.getSpellingLoc(Loc);
if (E->hasQualifier()) {
Loc = E->getNameInfo().getLoc();
SpellingLoc = SM.getSpellingLoc(Loc);
}
const NamedDecl *Decl = E->getDecl();
if (const VarDecl *D2 = dyn_cast<VarDecl>(Decl)) {
int Flags = 0;
if (D2->isLocalVarDeclOrParm()) {
Flags = NoCrossref;
}
std::string Mangled = getMangledName(CurMangleContext, Decl);
visitIdentifier("use", "variable", getQualifiedName(Decl), Loc, Mangled,
D2->getType(), getContext(SpellingLoc), Flags);
} else if (isa<FunctionDecl>(Decl)) {
const FunctionDecl *F = dyn_cast<FunctionDecl>(Decl);
if (F->isTemplateInstantiation()) {
Decl = F->getTemplateInstantiationPattern();
VisitForwardedStatements(E, Loc);
}
std::string Mangled = getMangledName(CurMangleContext, Decl);
visitIdentifier("use", "function", getQualifiedName(Decl), Loc, Mangled,
E->getType(), getContext(SpellingLoc));
} else if (isa<EnumConstantDecl>(Decl)) {
std::string Mangled = getMangledName(CurMangleContext, Decl);
visitIdentifier("use", "enum", getQualifiedName(Decl), Loc, Mangled,
E->getType(), getContext(SpellingLoc));
}
return true;
}
bool VisitCXXConstructorDecl(CXXConstructorDecl *D) {
if (!isInterestingLocation(D->getLocation())) {
return true;
}
for (CXXConstructorDecl::init_const_iterator It = D->init_begin();
It != D->init_end(); ++It) {
const CXXCtorInitializer *Ci = *It;
if (!Ci->getMember() || !Ci->isWritten()) {
continue;
}
SourceLocation Loc = Ci->getMemberLocation();
if (!isInterestingLocation(Loc)) {
continue;
}
FieldDecl *Member = Ci->getMember();
std::string Mangled = getMangledName(CurMangleContext, Member);
// We want the constructor to be the context of the field use and
// `getContext(D)` would skip the current context. An alternate approach
// would be `getContext(Loc)` but the heuristic to omit a context if we're
// in a macro body expansion seems incorrect for field initializations; if
// code is using macros to initialize the fields, we still care.
visitIdentifier("use", "field", getQualifiedName(Member), Loc, Mangled,
Member->getType(), translateContext(D));
}
return true;
}
bool VisitMemberExpr(MemberExpr *E) {
SourceLocation Loc = E->getExprLoc();
if (!isInterestingLocation(Loc)) {
return true;
}
SourceLocation SpellingLoc = SM.getSpellingLoc(Loc);
ValueDecl *Decl = E->getMemberDecl();
if (FieldDecl *Field = dyn_cast<FieldDecl>(Decl)) {
std::string Mangled = getMangledName(CurMangleContext, Field);
visitIdentifier("use", "field", getQualifiedName(Field), Loc, Mangled,
Field->getType(), getContext(SpellingLoc));
}
return true;
}
// Helper function for producing heuristic results for usages in dependent
// code. These are distinguished from concrete results (obtained for dependent
// code using the AutoTemplateContext machinery) by setting the “confidence”
// property to “cppTemplateHeuristic”. We don't expect this method to be
// intentionally called multiple times for a given (Loc, NamedDecl) pair
// because our callers should be mutually exclusive AST node types. However,
// it's fine if this method is called multiple time for a given pair because
// we explicitly de-duplicate records with an identical string representation
// (which is a good reason to have this helper, as it ensures identical
// representations).
void visitHeuristicResult(SourceLocation Loc, const NamedDecl *ND) {
SourceLocation SpellingLoc = SM.getSpellingLoc(Loc);
if (const UsingShadowDecl *USD = dyn_cast<UsingShadowDecl>(ND)) {
ND = USD->getTargetDecl();
}
if (const TemplateDecl *TD = dyn_cast<TemplateDecl>(ND)) {
ND = TD->getTemplatedDecl();
}
QualType MaybeType;
const char *SyntaxKind = nullptr;
if (const FunctionDecl *F = dyn_cast<FunctionDecl>(ND)) {
MaybeType = F->getType();
SyntaxKind = "function";
} else if (const FieldDecl *F = dyn_cast<FieldDecl>(ND)) {
MaybeType = F->getType();
SyntaxKind = "field";
} else if (const EnumConstantDecl *E = dyn_cast<EnumConstantDecl>(ND)) {
MaybeType = E->getType();
SyntaxKind = "enum";
} else if (const TypedefNameDecl *T = dyn_cast<TypedefNameDecl>(ND)) {
MaybeType = T->getUnderlyingType();
SyntaxKind = "type";
}
if (SyntaxKind) {
std::string Mangled = getMangledName(CurMangleContext, ND);
visitIdentifier("use", SyntaxKind, getQualifiedName(ND), Loc, Mangled,
MaybeType, getContext(SpellingLoc), Heuristic);
}
}
bool VisitOverloadExpr(OverloadExpr *E) {
SourceLocation Loc = E->getExprLoc();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return true;
}
for (auto *Candidate : E->decls()) {
visitHeuristicResult(Loc, Candidate);
}
// Also record this location so that if we have instantiations, we can
// gather more accurate results from them.
if (TemplateStack) {
TemplateStack->visitDependent(Loc);
}
return true;
}
bool VisitCXXDependentScopeMemberExpr(CXXDependentScopeMemberExpr *E) {
SourceLocation Loc = E->getMemberLoc();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return true;
}
// If possible, provide a heuristic result without instantiation.
for (const NamedDecl *D : Resolver->resolveMemberExpr(E)) {
visitHeuristicResult(Loc, D);
}
// Also record this location so that if we have instantiations, we can
// gather more accurate results from them.
if (TemplateStack) {
TemplateStack->visitDependent(Loc);
}
return true;
}
bool VisitCXXNewExpr(CXXNewExpr *N) {
// If we are in a template and the new is type-dependent, register it in
// ForwardedTemplateLocations to forward its uses to the surrounding
// template call site
if (TemplateStack && TemplateStack->inGatherMode()) {
const auto *TypeInfo = N->getAllocatedTypeSourceInfo();
const auto ConstructExprLoc = TypeInfo->getTypeLoc().getBeginLoc();
if (N->isTypeDependent()) {
TemplateStack->visitDependent(ConstructExprLoc);
ForwardedTemplateLocations.insert(ConstructExprLoc.getRawEncoding());
}
}
return true;
}
bool VisitDependentScopeDeclRefExpr(DependentScopeDeclRefExpr *E) {
SourceLocation Loc = E->getLocation();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return true;
}
for (const NamedDecl *D : Resolver->resolveDeclRefExpr(E)) {
visitHeuristicResult(Loc, D);
}
// Also record this location so that if we have instantiations, we can
// gather more accurate results from them.
if (TemplateStack) {
TemplateStack->visitDependent(Loc);
// Also record the dependent NestedNameSpecifier locations
for (auto NestedNameLoc = E->getQualifierLoc();
NestedNameLoc &&
NestedNameLoc.getNestedNameSpecifier()->isDependent();
NestedNameLoc = NestedNameLoc.getPrefix()) {
TemplateStack->visitDependent(NestedNameLoc.getLocalBeginLoc());
}
}
return true;
}
bool VisitStringLiteral(StringLiteral *E) {
if (E->getCharByteWidth() != 1) {
return true;
}
StringRef sref = E->getString();
std::string s = sref.str();
if (!stringStartsWith(s, "chrome://") &&
!stringStartsWith(s, "resource://")) {
return true;
}
if (!isASCII(s)) {
return true;
}
SourceLocation Loc = E->getStrTokenLoc(0);
normalizeLocation(&Loc);
std::string symbol = std::string("URL_") + mangleURL(s);
visitIdentifier("use", "file", StringRef(s), Loc, symbol, QualType(),
Context(), NotIdentifierToken | LocRangeEndValid);
return true;
}
void enterSourceFile(SourceLocation Loc) {
normalizeLocation(&Loc);
FileInfo *newFile = getFileInfo(Loc);
if (!newFile->Interesting) {
return;
}
FileType type = newFile->Generated ? FileType::Generated : FileType::Source;
std::string symbol =
std::string("FILE_") + mangleFile(newFile->Realname, type);
// We use an explicit zero-length source range at the start of the file. If
// we don't set the LocRangeEndValid flag, the visitIdentifier code will use
// the entire first token, which could be e.g. a long multiline-comment.
visitIdentifier("def", "file", newFile->Realname, SourceRange(Loc), symbol,
QualType(), Context(),
NotIdentifierToken | LocRangeEndValid);
}
void inclusionDirective(SourceRange FileNameRange, const FileEntry *File) {
std::string includedFile(File->tryGetRealPathName());
FileType type = relativizePath(includedFile);
if (type == FileType::Unknown) {
return;
}
std::string symbol = std::string("FILE_") + mangleFile(includedFile, type);
// Support the #include MACRO use-case
// When parsing #include MACRO:
// - the filename is never passed to onTokenLexed
// - inclusionDirective is called before endMacroExpansion (which is only
// called when the following token is parsed) So add the filename here and
// call endMacroExpansion immediately. This ensures the macro has a correct
// expansion and it has been added to MacroMaps so the referenced filename
// knows to populate inExpansionAt.
if (MacroExpansionState) {
MacroExpansionState->TokenLocations[FileNameRange.getBegin()] =
MacroExpansionState->Expansion.length();
MacroExpansionState->Expansion += '"';
MacroExpansionState->Expansion += includedFile;
MacroExpansionState->Expansion += '"';
endMacroExpansion();
}
visitIdentifier("use", "file", includedFile, FileNameRange, symbol,
QualType(), Context(),
NotIdentifierToken | LocRangeEndValid);
}
void macroDefined(const Token &Tok, const MacroDirective *Macro) {
if (Macro->getMacroInfo()->isBuiltinMacro()) {
return;
}
SourceLocation Loc = Tok.getLocation();
normalizeLocation(&Loc);
if (!isInterestingLocation(Loc)) {
return;
}
IdentifierInfo *Ident = Tok.getIdentifierInfo();
if (Ident) {
std::string Mangled = std::string("M_") +
mangleLocation(Loc, std::string(Ident->getName()));
visitIdentifier("def", "macro", Ident->getName(), Loc, Mangled);
}
}
void macroUsed(const Token &Tok, const MacroInfo *Macro) {
if (!Macro) {
return;
}
if (Macro->isBuiltinMacro()) {
return;
}
SourceLocation Loc = Tok.getLocation();
if (!isInterestingLocation(Loc)) {
return;
}
IdentifierInfo *Ident = Tok.getIdentifierInfo();
if (Ident) {
std::string Mangled =
std::string("M_") + mangleLocation(Macro->getDefinitionLoc(),
std::string(Ident->getName()));
visitIdentifier("use", "macro", Ident->getName(), Loc, Mangled);
}
}
void beginMacroExpansion(const Token &Tok, const MacroInfo *Macro,
SourceRange Range) {
if (!Macro)
return;
if (Macro->isBuiltinMacro())
return;
if (!Tok.getIdentifierInfo())
return;
auto location = Tok.getLocation();
normalizeLocation(&location);
if (!isInterestingLocation(location))
return;
if (MacroExpansionState) {
const auto InMacroArgs = MacroExpansionState->Range.fullyContains(
SM.getExpansionRange(Range).getAsRange());
const auto InMacroBody =
SM.getExpansionLoc(Tok.getLocation()) ==
SM.getExpansionLoc(MacroExpansionState->MacroNameToken.getLocation());
if (InMacroArgs || InMacroBody) {
if (MacroExpansionState->MacroInfo->getDefinitionLoc() !=
Macro->getDefinitionLoc()) {
IdentifierInfo *DependencyIdent = Tok.getIdentifierInfo();
std::string DependencySymbol =
std::string("M_") +
mangleLocation(Macro->getDefinitionLoc(),
std::string(DependencyIdent->getName()));
MacroExpansionState->Dependencies.push_back(DependencySymbol);
}
macroUsed(Tok, Macro);
return;
}
endMacroExpansion();
}
MacroExpansionState = ::MacroExpansionState{
.MacroNameToken = Tok,
.MacroInfo = Macro,
.Expansion = {},
.TokenLocations = {},
.Range = Range,
.PrevPrevTok = {},
.PrevTok = {},
};
}
void endMacroExpansion() {
// large macros are too slow to reformat, don't reformat macros larger than
// those arbitrary thresholds
static constexpr auto includedFileExpansionReformatThreshold = 20'000;
static constexpr auto mainFileExpansionReformatThreshold = 200'000;
const auto expansionLocation =
SM.getExpansionLoc(MacroExpansionState->MacroNameToken.getLocation());
const auto expansionFilename = SM.getFilename(expansionLocation);
const auto includedExtensions =
std::array{".h", ".hpp", ".hxx", ".inc", ".def"};
const auto isIncludedFile =
std::any_of(includedExtensions.begin(), includedExtensions.end(),
[&](const auto *extension) {
return expansionFilename.ends_with_insensitive(extension);
});
const auto expansionReformatThreshold =
isIncludedFile ? includedFileExpansionReformatThreshold
: mainFileExpansionReformatThreshold;
if (MacroExpansionState->Expansion.length() < expansionReformatThreshold) {
// large macros are too memory-hungry to reformat with ColumnLimit != 0
auto style = clang::format::getMozillaStyle();
if (MacroExpansionState->Expansion.length() >
includedFileExpansionReformatThreshold)
style.ColumnLimit = 0;
const auto replacements = clang::format::reformat(
style, MacroExpansionState->Expansion,
{tooling::Range(0, MacroExpansionState->Expansion.length())});
auto formatted = clang::tooling::applyAllReplacements(
MacroExpansionState->Expansion, replacements);
if (formatted) {
for (auto &[k, v] : MacroExpansionState->TokenLocations) {
v = replacements.getShiftedCodePosition(v);
}
MacroExpansionState->Expansion = std::move(formatted.get());
}
}
IdentifierInfo *Ident =
MacroExpansionState->MacroNameToken.getIdentifierInfo();
std::string Symbol =
std::string("M_") +
mangleLocation(MacroExpansionState->MacroInfo->getDefinitionLoc(),
std::string(Ident->getName()));
const auto dependenciesBegin = MacroExpansionState->Dependencies.begin();
const auto dependenciesEnd = MacroExpansionState->Dependencies.end();
std::sort(dependenciesBegin, dependenciesEnd);
MacroExpansionState->Dependencies.erase(
std::unique(dependenciesBegin, dependenciesEnd), dependenciesEnd);
auto Key = Symbol;
for (const auto &Dependency : MacroExpansionState->Dependencies) {
Key.push_back(',');
Key += Dependency;
}
MacroMaps.emplace(std::pair{
MacroExpansionState->MacroNameToken.getLocation(),
ExpandedMacro{
std::move(Symbol),
std::move(Key),
std::move(MacroExpansionState->Expansion),
std::move(MacroExpansionState->TokenLocations),
},
});
MacroExpansionState.reset();
macroUsed(MacroExpansionState->MacroNameToken,
MacroExpansionState->MacroInfo);
}
void onTokenLexed(const Token &Tok) {
if (!MacroExpansionState)
return;
// check if we exited the macro expansion
SourceLocation SLoc = Tok.getLocation();
if (!SLoc.isMacroID()) {
endMacroExpansion();
return;
}
if (ConcatInfo.AvoidConcat(MacroExpansionState->PrevPrevTok,
MacroExpansionState->PrevTok, Tok)) {
MacroExpansionState->Expansion += ' ';
}
if (Tok.isAnnotation()) {
const auto Range = SM.getImmediateExpansionRange(Tok.getLocation());
const char *Start = SM.getCharacterData(Range.getBegin());
const char *End = SM.getCharacterData(Range.getEnd()) + 1;
MacroExpansionState->Expansion += StringRef(Start, End - Start);
} else {
const auto spelling = CI.getPreprocessor().getSpelling(Tok);
if (Tok.isAnyIdentifier()) {
MacroExpansionState->TokenLocations[SLoc] =
MacroExpansionState->Expansion.length();
}
MacroExpansionState->Expansion += spelling;
}
MacroExpansionState->PrevPrevTok = MacroExpansionState->PrevTok;
MacroExpansionState->PrevTok = Tok;
}
};
void PreprocessorHook::FileChanged(SourceLocation Loc, FileChangeReason Reason,
SrcMgr::CharacteristicKind FileType,
FileID PrevFID = FileID()) {
switch (Reason) {
case PPCallbacks::RenameFile:
case PPCallbacks::SystemHeaderPragma:
// Don't care about these, since we want the actual on-disk filenames
break;
case PPCallbacks::EnterFile:
Indexer->enterSourceFile(Loc);
break;
case PPCallbacks::ExitFile:
// Don't care about exiting files
break;
}
}
void PreprocessorHook::InclusionDirective(
SourceLocation HashLoc, const Token &IncludeTok, StringRef FileName,
bool IsAngled, CharSourceRange FileNameRange,
#if CLANG_VERSION_MAJOR >= 16
OptionalFileEntryRef File,
#elif CLANG_VERSION_MAJOR >= 15
Optional<FileEntryRef> File,
#else
const FileEntry *File,
#endif
StringRef SearchPath, StringRef RelativePath,
#if CLANG_VERSION_MAJOR >= 19
const Module *SuggestedModule, bool ModuleImported,
#else
const Module *Imported,
#endif
SrcMgr::CharacteristicKind FileType) {
#if CLANG_VERSION_MAJOR >= 15
if (!File) {
return;
}
Indexer->inclusionDirective(FileNameRange.getAsRange(),
&File->getFileEntry());
#else
Indexer->inclusionDirective(FileNameRange.getAsRange(), File);
#endif
}
void PreprocessorHook::MacroDefined(const Token &Tok,
const MacroDirective *Md) {
Indexer->macroDefined(Tok, Md);
}
void PreprocessorHook::MacroExpands(const Token &Tok, const MacroDefinition &Md,
SourceRange Range, const MacroArgs *Ma) {
Indexer->beginMacroExpansion(Tok, Md.getMacroInfo(), Range);
}
void PreprocessorHook::MacroUndefined(const Token &Tok,
const MacroDefinition &Md,
const MacroDirective *Undef) {
Indexer->macroUsed(Tok, Md.getMacroInfo());
}
void PreprocessorHook::Defined(const Token &Tok, const MacroDefinition &Md,
SourceRange Range) {
Indexer->macroUsed(Tok, Md.getMacroInfo());
}
void PreprocessorHook::Ifdef(SourceLocation Loc, const Token &Tok,
const MacroDefinition &Md) {
Indexer->macroUsed(Tok, Md.getMacroInfo());
}
void PreprocessorHook::Ifndef(SourceLocation Loc, const Token &Tok,
const MacroDefinition &Md) {
Indexer->macroUsed(Tok, Md.getMacroInfo());
}
class IndexAction : public PluginASTAction {
protected:
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI,
llvm::StringRef F) {
return make_unique<IndexConsumer>(CI);
}
bool ParseArgs(const CompilerInstance &CI,
const std::vector<std::string> &Args) {
if (Args.size() != 3) {
DiagnosticsEngine &D = CI.getDiagnostics();
unsigned DiagID = D.getCustomDiagID(
DiagnosticsEngine::Error,
"Need arguments for the source, output, and object directories");
D.Report(DiagID);
return false;
}
// Load our directories
Srcdir = getAbsolutePath(Args[0]);
if (Srcdir.empty()) {
DiagnosticsEngine &D = CI.getDiagnostics();
unsigned DiagID = D.getCustomDiagID(
DiagnosticsEngine::Error, "Source directory '%0' does not exist");
D.Report(DiagID) << Args[0];
return false;
}
ensurePath(Args[1] + PATHSEP_STRING);
Outdir = getAbsolutePath(Args[1]);
Outdir += PATHSEP_STRING;
Objdir = getAbsolutePath(Args[2]);
if (Objdir.empty()) {
DiagnosticsEngine &D = CI.getDiagnostics();
unsigned DiagID = D.getCustomDiagID(DiagnosticsEngine::Error,
"Objdir '%0' does not exist");
D.Report(DiagID) << Args[2];
return false;
}
Objdir += PATHSEP_STRING;
printf("MOZSEARCH: %s %s %s\n", Srcdir.c_str(), Outdir.c_str(),
Objdir.c_str());
return true;
}
void printHelp(llvm::raw_ostream &Ros) {
Ros << "Help for mozsearch plugin goes here\n";
}
};
static FrontendPluginRegistry::Add<IndexAction>
Y("mozsearch-index", "create the mozsearch index database");