Source code
Revision control
Copy as Markdown
Other Tools
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
window.docShell.chromeEventHandler.classList.add("textRecognitionDialogFrame");
window.addEventListener("DOMContentLoaded", () => {
// The arguments are passed in as the final parameters to TabDialogBox.prototype.open.
new TextRecognitionModal(...window.arguments);
});
/**
* @typedef {object} TextRecognitionResult
* @property {number} confidence
* @property {string} string
* @property {DOMQuad} quad
*/
class TextRecognitionModal {
/**
* @param {Promise<TextRecognitionResult[]>} resultsPromise
* @param {Function} resizeVertically
* @param {object} [openLinkIn]
* @param {string} openLinkIn.url
* @param {string} openLinkIn.where
* @param {object} openLinkIn.params
*/
constructor(resultsPromise, resizeVertically, openLinkIn) {
/** @type {HTMLElement} */
this.textEl = document.querySelector(".textRecognitionText");
/** @type {NodeListOf<HTMLElement>} */
this.headerEls = document.querySelectorAll(".textRecognitionHeader");
/** @type {HTMLAnchorElement} */
this.linkEl = document.querySelector(
"#text-recognition-header-no-results a"
);
this.resizeVertically = resizeVertically;
this.openLinkIn = openLinkIn;
this.setupLink();
this.setupCloseHandler();
this.showHeaderByID("text-recognition-header-loading");
resultsPromise.then(
({ results, direction }) => {
if (results.length === 0) {
// Update the UI to indicate that there were no results.
this.showHeaderByID("text-recognition-header-no-results");
// It's still worth recording telemetry times, as the API was still invoked.
TelemetryStopwatch.finish(
"TEXT_RECOGNITION_API_PERFORMANCE",
resultsPromise
);
return;
}
// There were results, cluster them into a nice presentation, and present
// the results to the UI.
this.runClusteringAndUpdateUI(results, direction);
this.showHeaderByID("text-recognition-header-results");
TelemetryStopwatch.finish(
"TEXT_RECOGNITION_API_PERFORMANCE",
resultsPromise
);
TextRecognitionModal.recordInteractionTime();
},
error => {
// There was an error in the text recognition call. Treat this as the same
// as if there were no results, but report the error to the console and telemetry.
this.showHeaderByID("text-recognition-header-no-results");
console.error(
"There was an error recognizing the text from an image.",
error
);
Glean.browserUiInteraction.textrecognitionError.add(1);
TelemetryStopwatch.cancel(
"TEXT_RECOGNITION_API_PERFORMANCE",
resultsPromise
);
}
);
}
/**
* After the results are shown, measure how long a user interacts with the modal.
*/
static recordInteractionTime() {
TelemetryStopwatch.start(
"TEXT_RECOGNITION_INTERACTION_TIMING",
// Pass the instance of the window in case multiple tabs are doing text recognition
// and there is a race condition.
window
);
const finish = () => {
TelemetryStopwatch.finish("TEXT_RECOGNITION_INTERACTION_TIMING", window);
window.removeEventListener("blur", finish);
window.removeEventListener("unload", finish);
};
// The user's focus went away, record this as the total interaction, even if they
// go back and interact with it more. This can be triggered by doing actions like
// clicking the URL bar, or by switching tabs.
window.addEventListener("blur", finish);
// The modal is closed.
window.addEventListener("unload", finish);
}
/**
* After the results are shown, measure how long a user interacts with the modal.
*
* @param {number} textLength
*/
static recordTextLengthTelemetry(textLength) {
const histogram = Services.telemetry.getHistogramById(
"TEXT_RECOGNITION_TEXT_LENGTH"
);
histogram.add(textLength);
}
setupCloseHandler() {
document
.querySelector("#text-recognition-close")
.addEventListener("click", () => {
window.close();
});
}
/**
* Apply the variables for the support.mozilla.org URL.
*/
setupLink() {
this.linkEl.href = Services.urlFormatter.formatURL(this.linkEl.href);
this.linkEl.addEventListener("click", event => {
event.preventDefault();
this.openLinkIn(this.linkEl.href, "tab", {
forceForeground: true,
triggeringPrincipal:
Services.scriptSecurityManager.getSystemPrincipal(),
});
});
}
/**
* A helper to only show the appropriate header.
*
* @param {string} id
*/
showHeaderByID(id) {
for (const header of this.headerEls) {
header.style.display = "none";
}
document.getElementById(id).style.display = "";
this.resizeVertically();
}
/**
* @param {string} text
*/
static copy(text) {
const clipboard = Cc["@mozilla.org/widget/clipboardhelper;1"].getService(
Ci.nsIClipboardHelper
);
clipboard.copyString(text);
}
/**
* Cluster the text based on its visual position.
*
* @param {TextRecognitionResult[]} results
* @param {"ltr" | "rtl"} direction
*/
runClusteringAndUpdateUI(results, direction) {
/** @type {Vec2[]} */
const centers = [];
for (const result of results) {
const p = result.quad;
// Pick either the left-most or right-most edge. This optimizes for
// aligned text over centered text.
const minOrMax = direction === "ltr" ? Math.min : Math.max;
centers.push([
minOrMax(p.p1.x, p.p2.x, p.p3.x, p.p4.x),
(p.p1.y, p.p2.y, p.p3.y, p.p4.y) / 4,
]);
}
const distSq = new DistanceSquared(centers);
// The values are ranged 0 - 1. This value might be able to be determined
// algorithmically.
const averageDistance = Math.sqrt(distSq.quantile(0.2));
const clusters = densityCluster(
centers,
// Neighborhood radius:
averageDistance,
// Minimum points to form a cluster:
2
);
let text = "";
for (const cluster of clusters) {
const pCluster = document.createElement("p");
pCluster.className = "textRecognitionTextCluster";
for (let i = 0; i < cluster.length; i++) {
const index = cluster[i];
const { string } = results[index];
if (i + 1 === cluster.length) {
// Each cluster could be a paragraph, so add newlines to the end
// for better copying.
text += string + "\n\n";
// The paragraph tag automatically uses two newlines.
pCluster.innerText += string;
} else {
// This text is assumed to be a newlines in a paragraph, so only needs
// to be separated by a space.
text += string + " ";
pCluster.innerText += string + " ";
}
}
this.textEl.appendChild(pCluster);
}
this.textEl.style.display = "block";
text = text.trim();
TextRecognitionModal.copy(text);
TextRecognitionModal.recordTextLengthTelemetry(text.length);
}
}
/**
* A two dimensional vector.
*
* @typedef {number[]} Vec2
*/
/**
* @typedef {number} PointIndex
*/
/**
* An implementation of the DBSCAN clustering algorithm.
*
*
* @param {Vec2[]} points
* @param {number} distance
* @param {number} minPoints
* @returns {Array<PointIndex[]>}
*/
function densityCluster(points, distance, minPoints) {
/**
* A flat of array of labels that match the index of the points array. The values have
* the following meaning:
*
* undefined := No label has been assigned
* "noise" := Noise is a point that hasn't been clustered.
* number := Cluster index
*
* @type {undefined | "noise" | Index}
*/
const labels = Array(points.length);
const noiseLabel = "noise";
let nextClusterIndex = 0;
// Every point must be visited at least once. Often they will be visited earlier
// in the interior of the loop.
for (let pointIndex = 0; pointIndex < points.length; pointIndex++) {
if (labels[pointIndex] !== undefined) {
// This point is already labeled from the interior logic.
continue;
}
// Get the neighbors that are within the range of the epsilon value, includes
// the current point.
const neighbors = getNeighborsWithinDistance(points, distance, pointIndex);
if (neighbors.length < minPoints) {
labels[pointIndex] = noiseLabel;
continue;
}
// Start a new cluster.
const clusterIndex = nextClusterIndex++;
labels[pointIndex] = clusterIndex;
// Fill the cluster. The neighbors array grows.
for (let i = 0; i < neighbors.length; i++) {
const nextPointIndex = neighbors[i];
if (typeof labels[nextPointIndex] === "number") {
// This point was already claimed, ignore it.
continue;
}
if (labels[nextPointIndex] === noiseLabel) {
// Claim this point and move on since noise has no neighbors.
labels[nextPointIndex] = clusterIndex;
continue;
}
// Claim this point as part of this cluster.
labels[nextPointIndex] = clusterIndex;
const newNeighbors = getNeighborsWithinDistance(
points,
distance,
nextPointIndex
);
if (newNeighbors.length >= minPoints) {
// Add on to the neighbors if more are found.
for (const newNeighbor of newNeighbors) {
if (!neighbors.includes(newNeighbor)) {
neighbors.push(newNeighbor);
}
}
}
}
}
const clusters = [];
// Pre-populate the clusters.
for (let i = 0; i < nextClusterIndex; i++) {
clusters[i] = [];
}
// Turn the labels into clusters, adding the noise to the end.
for (let pointIndex = 0; pointIndex < labels.length; pointIndex++) {
const label = labels[pointIndex];
if (typeof label === "number") {
clusters[label].push(pointIndex);
} else if (label === noiseLabel) {
// Add a single cluster.
clusters.push([pointIndex]);
} else {
throw new Error("Logic error. Expected every point to have a label.");
}
}
clusters.sort((a, b) => points[b[0]][1] - points[a[0]][1]);
return clusters;
}
/**
* @param {Vec2[]} points
* @param {number} distance
* @param {number} index
* @returns {Index[]}
*/
function getNeighborsWithinDistance(points, distance, index) {
let neighbors = [index];
// There is no reason to compute the square root here if we square the
// original distance.
const distanceSquared = distance * distance;
for (let otherIndex = 0; otherIndex < points.length; otherIndex++) {
if (otherIndex === index) {
continue;
}
const a = points[index];
const b = points[otherIndex];
const dx = a[0] - b[0];
const dy = a[1] - b[1];
if (dx * dx + dy * dy < distanceSquared) {
neighbors.push(otherIndex);
}
}
return neighbors;
}
/**
* This class pre-computes the squared distances to allow for efficient distance lookups,
* and it provides a way to look up a distance quantile.
*/
class DistanceSquared {
/** @type {Map<number>} */
#distances = new Map();
#list;
#distancesSorted;
/**
* @param {Vec2[]} list
*/
constructor(list) {
this.#list = list;
for (let aIndex = 0; aIndex < list.length; aIndex++) {
for (let bIndex = aIndex + 1; bIndex < list.length; bIndex++) {
const id = this.#getTupleID(aIndex, bIndex);
const a = this.#list[aIndex];
const b = this.#list[bIndex];
const dx = a[0] - b[0];
const dy = a[1] - b[1];
this.#distances.set(id, dx * dx + dy * dy);
}
}
}
/**
* Returns a unique tuple ID to identify the relationship between two vectors.
*/
#getTupleID(aIndex, bIndex) {
return aIndex < bIndex
? aIndex * this.#list.length + bIndex
: bIndex * this.#list.length + aIndex;
}
/**
* Returns the distance squared between two vectors.
*
* @param {Index} aIndex
* @param {Index} bIndex
* @returns {number} The distance squared
*/
get(aIndex, bIndex) {
return this.#distances.get(this.#getTupleID(aIndex, bIndex));
}
/**
* Returns the quantile squared.
*
* @param {number} percentile - Ranged between 0 - 1
* @returns {number}
*/
quantile(percentile) {
if (!this.#distancesSorted) {
this.#distancesSorted = [...this.#distances.values()].sort(
(a, b) => a - b
);
}
const index = Math.max(
0,
Math.min(
this.#distancesSorted.length - 1,
Math.round(this.#distancesSorted.length * percentile)
)
);
return this.#distancesSorted[index];
}
}