Copy as Markdown

Other Tools

#define BITDEPTH 16
/*
* Copyright © 2018, VideoLAN and dav1d authors
* Copyright © 2018, Two Orioles, LLC
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include <stdio.h>
#include "common/intops.h"
#include "src/lr_apply.h"
static void lr_stripe(const Dav1dFrameContext *const f, pixel *p,
const pixel (*left)[4], int x, int y,
const int plane, const int unit_w, const int row_h,
const Av1RestorationUnit *const lr, enum LrEdgeFlags edges)
{
const Dav1dDSPContext *const dsp = f->dsp;
const int chroma = !!plane;
const int ss_ver = chroma & (f->sr_cur.p.p.layout == DAV1D_PIXEL_LAYOUT_I420);
const ptrdiff_t stride = f->sr_cur.p.stride[chroma];
const int sby = (y + (y ? 8 << ss_ver : 0)) >> (6 - ss_ver + f->seq_hdr->sb128);
const int have_tt = f->c->n_tc > 1;
const pixel *lpf = f->lf.lr_lpf_line[plane] +
have_tt * (sby * (4 << f->seq_hdr->sb128) - 4) * PXSTRIDE(stride) + x;
// The first stripe of the frame is shorter by 8 luma pixel rows.
int stripe_h = imin((64 - 8 * !y) >> ss_ver, row_h - y);
looprestorationfilter_fn lr_fn;
LooprestorationParams params;
if (lr->type == DAV1D_RESTORATION_WIENER) {
int16_t (*const filter)[8] = params.filter;
filter[0][0] = filter[0][6] = lr->filter_h[0];
filter[0][1] = filter[0][5] = lr->filter_h[1];
filter[0][2] = filter[0][4] = lr->filter_h[2];
filter[0][3] = -(filter[0][0] + filter[0][1] + filter[0][2]) * 2;
#if BITDEPTH != 8
/* For 8-bit SIMD it's beneficial to handle the +128 separately
* in order to avoid overflows. */
filter[0][3] += 128;
#endif
filter[1][0] = filter[1][6] = lr->filter_v[0];
filter[1][1] = filter[1][5] = lr->filter_v[1];
filter[1][2] = filter[1][4] = lr->filter_v[2];
filter[1][3] = 128 - (filter[1][0] + filter[1][1] + filter[1][2]) * 2;
lr_fn = dsp->lr.wiener[!(filter[0][0] | filter[1][0])];
} else {
assert(lr->type >= DAV1D_RESTORATION_SGRPROJ);
const int sgr_idx = lr->type - DAV1D_RESTORATION_SGRPROJ;
const uint16_t *const sgr_params = dav1d_sgr_params[sgr_idx];
params.sgr.s0 = sgr_params[0];
params.sgr.s1 = sgr_params[1];
params.sgr.w0 = lr->sgr_weights[0];
params.sgr.w1 = 128 - (lr->sgr_weights[0] + lr->sgr_weights[1]);
lr_fn = dsp->lr.sgr[!!sgr_params[0] + !!sgr_params[1] * 2 - 1];
}
while (y + stripe_h <= row_h) {
// Change the HAVE_BOTTOM bit in edges to (sby + 1 != f->sbh || y + stripe_h != row_h)
edges ^= (-(sby + 1 != f->sbh || y + stripe_h != row_h) ^ edges) & LR_HAVE_BOTTOM;
lr_fn(p, stride, left, lpf, unit_w, stripe_h, &params, edges HIGHBD_CALL_SUFFIX);
left += stripe_h;
y += stripe_h;
p += stripe_h * PXSTRIDE(stride);
edges |= LR_HAVE_TOP;
stripe_h = imin(64 >> ss_ver, row_h - y);
if (stripe_h == 0) break;
lpf += 4 * PXSTRIDE(stride);
}
}
static void backup4xU(pixel (*dst)[4], const pixel *src, const ptrdiff_t src_stride,
int u)
{
for (; u > 0; u--, dst++, src += PXSTRIDE(src_stride))
pixel_copy(dst, src, 4);
}
static void lr_sbrow(const Dav1dFrameContext *const f, pixel *p, const int y,
const int w, const int h, const int row_h, const int plane)
{
const int chroma = !!plane;
const int ss_ver = chroma & (f->sr_cur.p.p.layout == DAV1D_PIXEL_LAYOUT_I420);
const int ss_hor = chroma & (f->sr_cur.p.p.layout != DAV1D_PIXEL_LAYOUT_I444);
const ptrdiff_t p_stride = f->sr_cur.p.stride[chroma];
const int unit_size_log2 = f->frame_hdr->restoration.unit_size[!!plane];
const int unit_size = 1 << unit_size_log2;
const int half_unit_size = unit_size >> 1;
const int max_unit_size = unit_size + half_unit_size;
// Y coordinate of the sbrow (y is 8 luma pixel rows above row_y)
const int row_y = y + ((8 >> ss_ver) * !!y);
// FIXME This is an ugly hack to lookup the proper AV1Filter unit for
// chroma planes. Question: For Multithreaded decoding, is it better
// to store the chroma LR information with collocated Luma information?
// In other words. For a chroma restoration unit locate at 128,128 and
// with a 4:2:0 chroma subsampling, do we store the filter information at
// the AV1Filter unit located at (128,128) or (256,256)
// TODO Support chroma subsampling.
const int shift_hor = 7 - ss_hor;
/* maximum sbrow height is 128 + 8 rows offset */
ALIGN_STK_16(pixel, pre_lr_border, 2, [128 + 8][4]);
const Av1RestorationUnit *lr[2];
enum LrEdgeFlags edges = (y > 0 ? LR_HAVE_TOP : 0) | LR_HAVE_RIGHT;
int aligned_unit_pos = row_y & ~(unit_size - 1);
if (aligned_unit_pos && aligned_unit_pos + half_unit_size > h)
aligned_unit_pos -= unit_size;
aligned_unit_pos <<= ss_ver;
const int sb_idx = (aligned_unit_pos >> 7) * f->sr_sb128w;
const int unit_idx = ((aligned_unit_pos >> 6) & 1) << 1;
lr[0] = &f->lf.lr_mask[sb_idx].lr[plane][unit_idx];
int restore = lr[0]->type != DAV1D_RESTORATION_NONE;
int x = 0, bit = 0;
for (; x + max_unit_size <= w; p += unit_size, edges |= LR_HAVE_LEFT, bit ^= 1) {
const int next_x = x + unit_size;
const int next_u_idx = unit_idx + ((next_x >> (shift_hor - 1)) & 1);
lr[!bit] =
&f->lf.lr_mask[sb_idx + (next_x >> shift_hor)].lr[plane][next_u_idx];
const int restore_next = lr[!bit]->type != DAV1D_RESTORATION_NONE;
if (restore_next)
backup4xU(pre_lr_border[bit], p + unit_size - 4, p_stride, row_h - y);
if (restore)
lr_stripe(f, p, pre_lr_border[!bit], x, y, plane, unit_size, row_h,
lr[bit], edges);
x = next_x;
restore = restore_next;
}
if (restore) {
edges &= ~LR_HAVE_RIGHT;
const int unit_w = w - x;
lr_stripe(f, p, pre_lr_border[!bit], x, y, plane, unit_w, row_h, lr[bit], edges);
}
}
void bytefn(dav1d_lr_sbrow)(Dav1dFrameContext *const f, pixel *const dst[3],
const int sby)
{
const int offset_y = 8 * !!sby;
const ptrdiff_t *const dst_stride = f->sr_cur.p.stride;
const int restore_planes = f->lf.restore_planes;
const int not_last = sby + 1 < f->sbh;
if (restore_planes & LR_RESTORE_Y) {
const int h = f->sr_cur.p.p.h;
const int w = f->sr_cur.p.p.w;
const int next_row_y = (sby + 1) << (6 + f->seq_hdr->sb128);
const int row_h = imin(next_row_y - 8 * not_last, h);
const int y_stripe = (sby << (6 + f->seq_hdr->sb128)) - offset_y;
lr_sbrow(f, dst[0] - offset_y * PXSTRIDE(dst_stride[0]), y_stripe, w,
h, row_h, 0);
}
if (restore_planes & (LR_RESTORE_U | LR_RESTORE_V)) {
const int ss_ver = f->sr_cur.p.p.layout == DAV1D_PIXEL_LAYOUT_I420;
const int ss_hor = f->sr_cur.p.p.layout != DAV1D_PIXEL_LAYOUT_I444;
const int h = (f->sr_cur.p.p.h + ss_ver) >> ss_ver;
const int w = (f->sr_cur.p.p.w + ss_hor) >> ss_hor;
const int next_row_y = (sby + 1) << ((6 - ss_ver) + f->seq_hdr->sb128);
const int row_h = imin(next_row_y - (8 >> ss_ver) * not_last, h);
const int offset_uv = offset_y >> ss_ver;
const int y_stripe = (sby << ((6 - ss_ver) + f->seq_hdr->sb128)) - offset_uv;
if (restore_planes & LR_RESTORE_U)
lr_sbrow(f, dst[1] - offset_uv * PXSTRIDE(dst_stride[1]), y_stripe,
w, h, row_h, 1);
if (restore_planes & LR_RESTORE_V)
lr_sbrow(f, dst[2] - offset_uv * PXSTRIDE(dst_stride[1]), y_stripe,
w, h, row_h, 2);
}
}