Revision control

Copy as Markdown

Other Tools

// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
use core::{marker::Copy, mem::size_of};
use super::{AsULE, ULE};
/// The [`ULE`] types implementing this trait guarantee that [`NicheBytes::NICHE_BIT_PATTERN`]
/// can never occur as a valid byte representation of the type.
///
/// Guarantees for a valid implementation.
/// 1. N must be equal to `core::mem::sizeo_of::<Self>()` or else it will
/// cause panics.
/// 2. The bit pattern [`NicheBytes::NICHE_BIT_PATTERN`] must not be incorrect as it would lead to
/// weird behaviour.
/// 3. The abstractions built on top of this trait must panic on an invalid N.
/// 4. The abstractions built on this trait that use type punning must ensure that type being
/// punned is [`ULE`].
pub trait NicheBytes<const N: usize> {
const NICHE_BIT_PATTERN: [u8; N];
}
/// [`ULE`] type for [`NichedOption<U,N>`] where U implements [`NicheBytes`].
/// The invalid bit pattern is used as the niche.
///
/// This uses 1 byte less than [`crate::ule::OptionULE<U>`] to represent [`NichedOption<U,N>`].
///
/// # Example
///
/// ```
/// use core::num::NonZeroI8;
/// use zerovec::ule::NichedOption;
/// use zerovec::ZeroVec;
///
/// let bytes = &[0x00, 0x01, 0x02, 0x00];
/// let zv_no: ZeroVec<NichedOption<NonZeroI8, 1>> =
/// ZeroVec::parse_byte_slice(bytes)
/// .expect("Unable to parse as NichedOption.");
///
/// assert_eq!(zv_no.get(0).map(|e| e.0), Some(None));
/// assert_eq!(zv_no.get(1).map(|e| e.0), Some(NonZeroI8::new(1)));
/// assert_eq!(zv_no.get(2).map(|e| e.0), Some(NonZeroI8::new(2)));
/// assert_eq!(zv_no.get(3).map(|e| e.0), Some(None));
/// ```
// Invariants:
// The union stores [`NicheBytes::NICHE_BIT_PATTERN`] when None.
// Any other bit pattern is a valid.
#[repr(C)]
pub union NichedOptionULE<U: NicheBytes<N> + ULE, const N: usize> {
/// Invariant: The value is `niche` only if the bytes equal NICHE_BIT_PATTERN.
niche: [u8; N],
/// Invariant: The value is `valid` if the `niche` field does not match NICHE_BIT_PATTERN.
valid: U,
}
impl<U: NicheBytes<N> + ULE + core::fmt::Debug, const N: usize> core::fmt::Debug
for NichedOptionULE<U, N>
{
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
self.get().fmt(f)
}
}
impl<U: NicheBytes<N> + ULE, const N: usize> NichedOptionULE<U, N> {
/// New `NichedOptionULE<U, N>` from `Option<U>`
pub fn new(opt: Option<U>) -> Self {
assert!(N == core::mem::size_of::<U>());
match opt {
Some(u) => Self { valid: u },
None => Self {
niche: <U as NicheBytes<N>>::NICHE_BIT_PATTERN,
},
}
}
/// Convert to an `Option<U>`
pub fn get(self) -> Option<U> {
// Safety: The union stores NICHE_BIT_PATTERN when None otherwise a valid U
unsafe {
if self.niche == <U as NicheBytes<N>>::NICHE_BIT_PATTERN {
None
} else {
Some(self.valid)
}
}
}
}
impl<U: NicheBytes<N> + ULE, const N: usize> Copy for NichedOptionULE<U, N> {}
impl<U: NicheBytes<N> + ULE, const N: usize> Clone for NichedOptionULE<U, N> {
fn clone(&self) -> Self {
*self
}
}
impl<U: NicheBytes<N> + ULE + PartialEq, const N: usize> PartialEq for NichedOptionULE<U, N> {
fn eq(&self, other: &Self) -> bool {
self.get().eq(&other.get())
}
}
impl<U: NicheBytes<N> + ULE + Eq, const N: usize> Eq for NichedOptionULE<U, N> {}
/// Safety for ULE trait
/// 1. NichedOptionULE does not have any padding bytes due to `#[repr(C)]` on a struct
/// containing only ULE fields.
/// NichedOptionULE either contains NICHE_BIT_PATTERN or valid U byte sequences.
/// In both cases the data is initialized.
/// 2. NichedOptionULE is aligned to 1 byte due to `#[repr(C, packed)]` on a struct containing only
/// ULE fields.
/// 3. validate_byte_slice impl returns an error if invalid bytes are encountered.
/// 4. validate_byte_slice impl returns an error there are extra bytes.
/// 5. The other ULE methods are left to their default impl.
/// 6. NichedOptionULE equality is based on ULE equality of the subfield, assuming that NicheBytes
/// has been implemented correctly (this is a correctness but not a safety guarantee).
unsafe impl<U: NicheBytes<N> + ULE, const N: usize> ULE for NichedOptionULE<U, N> {
fn validate_byte_slice(bytes: &[u8]) -> Result<(), crate::ZeroVecError> {
let size = size_of::<Self>();
// The implemention is only correct if NICHE_BIT_PATTERN has same number of bytes as the
// type.
debug_assert!(N == core::mem::size_of::<U>());
// The bytes should fully transmute to a collection of Self
if bytes.len() % size != 0 {
return Err(crate::ZeroVecError::length::<Self>(bytes.len()));
}
bytes.chunks(size).try_for_each(|chunk| {
// Associated const cannot be referenced in a pattern
if chunk == <U as NicheBytes<N>>::NICHE_BIT_PATTERN {
Ok(())
} else {
U::validate_byte_slice(chunk)
}
})
}
}
/// Optional type which uses [`NichedOptionULE<U,N>`] as ULE type.
/// The implementors guarantee that `N == core::mem::sizeo_of::<Self>()`
/// [`repr(transparent)`] guarantees that the layout is same as [`Option<U>`]
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[repr(transparent)]
#[non_exhaustive]
pub struct NichedOption<U, const N: usize>(pub Option<U>);
impl<U, const N: usize> NichedOption<U, N> {
pub const fn new(o: Option<U>) -> Self {
Self(o)
}
}
impl<U, const N: usize> Default for NichedOption<U, N> {
fn default() -> Self {
Self(None)
}
}
impl<U, const N: usize> From<Option<U>> for NichedOption<U, N> {
fn from(o: Option<U>) -> Self {
Self(o)
}
}
impl<U: AsULE, const N: usize> AsULE for NichedOption<U, N>
where
U::ULE: NicheBytes<N>,
{
type ULE = NichedOptionULE<U::ULE, N>;
fn to_unaligned(self) -> Self::ULE {
NichedOptionULE::new(self.0.map(U::to_unaligned))
}
fn from_unaligned(unaligned: Self::ULE) -> Self {
Self(unaligned.get().map(U::from_unaligned))
}
}