Revision control

Copy as Markdown

Other Tools

// Currently, rust warns when an unsafe fn contains an unsafe {} block. However,
// in the future, this will change to the reverse. For now, suppress this
// warning and generally stick with being explicit about unsafety.
#![allow(unused_unsafe)]
#![cfg_attr(not(feature = "rt"), allow(dead_code))]
//! Time driver.
mod entry;
pub(crate) use entry::TimerEntry;
use entry::{EntryList, TimerHandle, TimerShared, MAX_SAFE_MILLIS_DURATION};
mod handle;
pub(crate) use self::handle::Handle;
use self::wheel::Wheel;
mod source;
pub(crate) use source::TimeSource;
mod wheel;
use crate::loom::sync::atomic::{AtomicBool, Ordering};
use crate::loom::sync::Mutex;
use crate::runtime::driver::{self, IoHandle, IoStack};
use crate::time::error::Error;
use crate::time::{Clock, Duration};
use crate::util::WakeList;
use crate::loom::sync::atomic::AtomicU64;
use std::fmt;
use std::{num::NonZeroU64, ptr::NonNull};
struct AtomicOptionNonZeroU64(AtomicU64);
// A helper type to store the `next_wake`.
impl AtomicOptionNonZeroU64 {
fn new(val: Option<NonZeroU64>) -> Self {
Self(AtomicU64::new(val.map_or(0, NonZeroU64::get)))
}
fn store(&self, val: Option<NonZeroU64>) {
self.0
.store(val.map_or(0, NonZeroU64::get), Ordering::Relaxed);
}
fn load(&self) -> Option<NonZeroU64> {
NonZeroU64::new(self.0.load(Ordering::Relaxed))
}
}
/// Time implementation that drives [`Sleep`][sleep], [`Interval`][interval], and [`Timeout`][timeout].
///
/// A `Driver` instance tracks the state necessary for managing time and
/// notifying the [`Sleep`][sleep] instances once their deadlines are reached.
///
/// It is expected that a single instance manages many individual [`Sleep`][sleep]
/// instances. The `Driver` implementation is thread-safe and, as such, is able
/// to handle callers from across threads.
///
/// After creating the `Driver` instance, the caller must repeatedly call `park`
/// or `park_timeout`. The time driver will perform no work unless `park` or
/// `park_timeout` is called repeatedly.
///
/// The driver has a resolution of one millisecond. Any unit of time that falls
/// between milliseconds are rounded up to the next millisecond.
///
/// When an instance is dropped, any outstanding [`Sleep`][sleep] instance that has not
/// elapsed will be notified with an error. At this point, calling `poll` on the
/// [`Sleep`][sleep] instance will result in panic.
///
/// # Implementation
///
/// The time driver is based on the [paper by Varghese and Lauck][paper].
///
/// A hashed timing wheel is a vector of slots, where each slot handles a time
/// slice. As time progresses, the timer walks over the slot for the current
/// instant, and processes each entry for that slot. When the timer reaches the
/// end of the wheel, it starts again at the beginning.
///
/// The implementation maintains six wheels arranged in a set of levels. As the
/// levels go up, the slots of the associated wheel represent larger intervals
/// of time. At each level, the wheel has 64 slots. Each slot covers a range of
/// time equal to the wheel at the lower level. At level zero, each slot
/// represents one millisecond of time.
///
/// The wheels are:
///
/// * Level 0: 64 x 1 millisecond slots.
/// * Level 1: 64 x 64 millisecond slots.
/// * Level 2: 64 x ~4 second slots.
/// * Level 3: 64 x ~4 minute slots.
/// * Level 4: 64 x ~4 hour slots.
/// * Level 5: 64 x ~12 day slots.
///
/// When the timer processes entries at level zero, it will notify all the
/// `Sleep` instances as their deadlines have been reached. For all higher
/// levels, all entries will be redistributed across the wheel at the next level
/// down. Eventually, as time progresses, entries with [`Sleep`][sleep] instances will
/// either be canceled (dropped) or their associated entries will reach level
/// zero and be notified.
///
/// [sleep]: crate::time::Sleep
/// [timeout]: crate::time::Timeout
/// [interval]: crate::time::Interval
#[derive(Debug)]
pub(crate) struct Driver {
/// Parker to delegate to.
park: IoStack,
}
/// Timer state shared between `Driver`, `Handle`, and `Registration`.
struct Inner {
/// The earliest time at which we promise to wake up without unparking.
next_wake: AtomicOptionNonZeroU64,
/// Sharded Timer wheels.
wheels: Box<[Mutex<wheel::Wheel>]>,
/// True if the driver is being shutdown.
pub(super) is_shutdown: AtomicBool,
// When `true`, a call to `park_timeout` should immediately return and time
// should not advance. One reason for this to be `true` is if the task
// passed to `Runtime::block_on` called `task::yield_now()`.
//
// While it may look racy, it only has any effect when the clock is paused
// and pausing the clock is restricted to a single-threaded runtime.
#[cfg(feature = "test-util")]
did_wake: AtomicBool,
}
// ===== impl Driver =====
impl Driver {
/// Creates a new `Driver` instance that uses `park` to block the current
/// thread and `time_source` to get the current time and convert to ticks.
///
/// Specifying the source of time is useful when testing.
pub(crate) fn new(park: IoStack, clock: &Clock, shards: u32) -> (Driver, Handle) {
assert!(shards > 0);
let time_source = TimeSource::new(clock);
let wheels: Vec<_> = (0..shards)
.map(|_| Mutex::new(wheel::Wheel::new()))
.collect();
let handle = Handle {
time_source,
inner: Inner {
next_wake: AtomicOptionNonZeroU64::new(None),
wheels: wheels.into_boxed_slice(),
is_shutdown: AtomicBool::new(false),
#[cfg(feature = "test-util")]
did_wake: AtomicBool::new(false),
},
};
let driver = Driver { park };
(driver, handle)
}
pub(crate) fn park(&mut self, handle: &driver::Handle) {
self.park_internal(handle, None);
}
pub(crate) fn park_timeout(&mut self, handle: &driver::Handle, duration: Duration) {
self.park_internal(handle, Some(duration));
}
pub(crate) fn shutdown(&mut self, rt_handle: &driver::Handle) {
let handle = rt_handle.time();
if handle.is_shutdown() {
return;
}
handle.inner.is_shutdown.store(true, Ordering::SeqCst);
// Advance time forward to the end of time.
handle.process_at_time(0, u64::MAX);
self.park.shutdown(rt_handle);
}
fn park_internal(&mut self, rt_handle: &driver::Handle, limit: Option<Duration>) {
let handle = rt_handle.time();
assert!(!handle.is_shutdown());
// Finds out the min expiration time to park.
let locks = (0..rt_handle.time().inner.get_shard_size())
.map(|id| rt_handle.time().inner.lock_sharded_wheel(id))
.collect::<Vec<_>>();
let expiration_time = locks
.iter()
.filter_map(|lock| lock.next_expiration_time())
.min();
rt_handle
.time()
.inner
.next_wake
.store(next_wake_time(expiration_time));
// Safety: After updating the `next_wake`, we drop all the locks.
drop(locks);
match expiration_time {
Some(when) => {
let now = handle.time_source.now(rt_handle.clock());
// Note that we effectively round up to 1ms here - this avoids
// very short-duration microsecond-resolution sleeps that the OS
// might treat as zero-length.
let mut duration = handle
.time_source
.tick_to_duration(when.saturating_sub(now));
if duration > Duration::from_millis(0) {
if let Some(limit) = limit {
duration = std::cmp::min(limit, duration);
}
self.park_thread_timeout(rt_handle, duration);
} else {
self.park.park_timeout(rt_handle, Duration::from_secs(0));
}
}
None => {
if let Some(duration) = limit {
self.park_thread_timeout(rt_handle, duration);
} else {
self.park.park(rt_handle);
}
}
}
// Process pending timers after waking up
handle.process(rt_handle.clock());
}
cfg_test_util! {
fn park_thread_timeout(&mut self, rt_handle: &driver::Handle, duration: Duration) {
let handle = rt_handle.time();
let clock = rt_handle.clock();
if clock.can_auto_advance() {
self.park.park_timeout(rt_handle, Duration::from_secs(0));
// If the time driver was woken, then the park completed
// before the "duration" elapsed (usually caused by a
// yield in `Runtime::block_on`). In this case, we don't
// advance the clock.
if !handle.did_wake() {
// Simulate advancing time
if let Err(msg) = clock.advance(duration) {
panic!("{}", msg);
}
}
} else {
self.park.park_timeout(rt_handle, duration);
}
}
}
cfg_not_test_util! {
fn park_thread_timeout(&mut self, rt_handle: &driver::Handle, duration: Duration) {
self.park.park_timeout(rt_handle, duration);
}
}
}
// Helper function to turn expiration_time into next_wake_time.
// Since the `park_timeout` will round up to 1ms for avoiding very
// short-duration microsecond-resolution sleeps, we do the same here.
// The conversion is as follows
// None => None
// Some(0) => Some(1)
// Some(i) => Some(i)
fn next_wake_time(expiration_time: Option<u64>) -> Option<NonZeroU64> {
expiration_time.and_then(|v| {
if v == 0 {
NonZeroU64::new(1)
} else {
NonZeroU64::new(v)
}
})
}
impl Handle {
/// Runs timer related logic, and returns the next wakeup time
pub(self) fn process(&self, clock: &Clock) {
let now = self.time_source().now(clock);
// For fairness, randomly select one to start.
let shards = self.inner.get_shard_size();
let start = crate::runtime::context::thread_rng_n(shards);
self.process_at_time(start, now);
}
pub(self) fn process_at_time(&self, start: u32, now: u64) {
let shards = self.inner.get_shard_size();
let expiration_time = (start..shards + start)
.filter_map(|i| self.process_at_sharded_time(i, now))
.min();
self.inner.next_wake.store(next_wake_time(expiration_time));
}
// Returns the next wakeup time of this shard.
pub(self) fn process_at_sharded_time(&self, id: u32, mut now: u64) -> Option<u64> {
let mut waker_list = WakeList::new();
let mut lock = self.inner.lock_sharded_wheel(id);
if now < lock.elapsed() {
// Time went backwards! This normally shouldn't happen as the Rust language
// guarantees that an Instant is monotonic, but can happen when running
// Linux in a VM on a Windows host due to std incorrectly trusting the
// hardware clock to be monotonic.
//
// See <https://github.com/tokio-rs/tokio/issues/3619> for more information.
now = lock.elapsed();
}
while let Some(entry) = lock.poll(now) {
debug_assert!(unsafe { entry.is_pending() });
// SAFETY: We hold the driver lock, and just removed the entry from any linked lists.
if let Some(waker) = unsafe { entry.fire(Ok(())) } {
waker_list.push(waker);
if !waker_list.can_push() {
// Wake a batch of wakers. To avoid deadlock, we must do this with the lock temporarily dropped.
drop(lock);
waker_list.wake_all();
lock = self.inner.lock_sharded_wheel(id);
}
}
}
let next_wake_up = lock.poll_at();
drop(lock);
waker_list.wake_all();
next_wake_up
}
/// Removes a registered timer from the driver.
///
/// The timer will be moved to the cancelled state. Wakers will _not_ be
/// invoked. If the timer is already completed, this function is a no-op.
///
/// This function always acquires the driver lock, even if the entry does
/// not appear to be registered.
///
/// SAFETY: The timer must not be registered with some other driver, and
/// `add_entry` must not be called concurrently.
pub(self) unsafe fn clear_entry(&self, entry: NonNull<TimerShared>) {
unsafe {
let mut lock = self.inner.lock_sharded_wheel(entry.as_ref().shard_id());
if entry.as_ref().might_be_registered() {
lock.remove(entry);
}
entry.as_ref().handle().fire(Ok(()));
}
}
/// Removes and re-adds an entry to the driver.
///
/// SAFETY: The timer must be either unregistered, or registered with this
/// driver. No other threads are allowed to concurrently manipulate the
/// timer at all (the current thread should hold an exclusive reference to
/// the `TimerEntry`)
pub(self) unsafe fn reregister(
&self,
unpark: &IoHandle,
new_tick: u64,
entry: NonNull<TimerShared>,
) {
let waker = unsafe {
let mut lock = self.inner.lock_sharded_wheel(entry.as_ref().shard_id());
// We may have raced with a firing/deregistration, so check before
// deregistering.
if unsafe { entry.as_ref().might_be_registered() } {
lock.remove(entry);
}
// Now that we have exclusive control of this entry, mint a handle to reinsert it.
let entry = entry.as_ref().handle();
if self.is_shutdown() {
unsafe { entry.fire(Err(crate::time::error::Error::shutdown())) }
} else {
entry.set_expiration(new_tick);
// Note: We don't have to worry about racing with some other resetting
// thread, because add_entry and reregister require exclusive control of
// the timer entry.
match unsafe { lock.insert(entry) } {
Ok(when) => {
if self
.inner
.next_wake
.load()
.map(|next_wake| when < next_wake.get())
.unwrap_or(true)
{
unpark.unpark();
}
None
}
Err((entry, crate::time::error::InsertError::Elapsed)) => unsafe {
entry.fire(Ok(()))
},
}
}
// Must release lock before invoking waker to avoid the risk of deadlock.
};
// The timer was fired synchronously as a result of the reregistration.
// Wake the waker; this is needed because we might reset _after_ a poll,
// and otherwise the task won't be awoken to poll again.
if let Some(waker) = waker {
waker.wake();
}
}
cfg_test_util! {
fn did_wake(&self) -> bool {
self.inner.did_wake.swap(false, Ordering::SeqCst)
}
}
}
// ===== impl Inner =====
impl Inner {
/// Locks the driver's sharded wheel structure.
pub(super) fn lock_sharded_wheel(
&self,
shard_id: u32,
) -> crate::loom::sync::MutexGuard<'_, Wheel> {
let index = shard_id % (self.wheels.len() as u32);
// Safety: This modulo operation ensures that the index is not out of bounds.
unsafe { self.wheels.get_unchecked(index as usize).lock() }
}
// Check whether the driver has been shutdown
pub(super) fn is_shutdown(&self) -> bool {
self.is_shutdown.load(Ordering::SeqCst)
}
// Gets the number of shards.
fn get_shard_size(&self) -> u32 {
self.wheels.len() as u32
}
}
impl fmt::Debug for Inner {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("Inner").finish()
}
}
#[cfg(test)]
mod tests;