Revision control
Copy as Markdown
Other Tools
/// Deserialization module.
use std::{borrow::Cow, io, str};
use base64::Engine;
use serde::{
de::{self, DeserializeSeed, Deserializer as _, Visitor},
Deserialize,
};
use self::{id::IdDeserializer, tag::TagDeserializer};
pub use crate::error::{Error, Position, SpannedError};
use crate::{
error::{Result, SpannedResult},
extensions::Extensions,
options::Options,
parse::{AnyNum, Bytes, ParsedStr, BASE64_ENGINE},
};
mod id;
mod tag;
#[cfg(test)]
mod tests;
mod value;
/// The RON deserializer.
///
/// If you just want to simply deserialize a value,
/// you can use the [`from_str`] convenience function.
pub struct Deserializer<'de> {
bytes: Bytes<'de>,
newtype_variant: bool,
last_identifier: Option<&'de str>,
recursion_limit: Option<usize>,
}
impl<'de> Deserializer<'de> {
// Cannot implement trait here since output is tied to input lifetime 'de.
#[allow(clippy::should_implement_trait)]
pub fn from_str(input: &'de str) -> SpannedResult<Self> {
Self::from_str_with_options(input, Options::default())
}
pub fn from_bytes(input: &'de [u8]) -> SpannedResult<Self> {
Self::from_bytes_with_options(input, Options::default())
}
pub fn from_str_with_options(input: &'de str, options: Options) -> SpannedResult<Self> {
Self::from_bytes_with_options(input.as_bytes(), options)
}
pub fn from_bytes_with_options(input: &'de [u8], options: Options) -> SpannedResult<Self> {
let mut deserializer = Deserializer {
bytes: Bytes::new(input)?,
newtype_variant: false,
last_identifier: None,
recursion_limit: options.recursion_limit,
};
deserializer.bytes.exts |= options.default_extensions;
Ok(deserializer)
}
pub fn remainder(&self) -> Cow<'_, str> {
String::from_utf8_lossy(self.bytes.bytes())
}
pub fn span_error(&self, code: Error) -> SpannedError {
self.bytes.span_error(code)
}
}
/// A convenience function for building a deserializer
/// and deserializing a value of type `T` from a reader.
pub fn from_reader<R, T>(rdr: R) -> SpannedResult<T>
where
R: io::Read,
T: de::DeserializeOwned,
{
Options::default().from_reader(rdr)
}
/// A convenience function for building a deserializer
/// and deserializing a value of type `T` from a string.
pub fn from_str<'a, T>(s: &'a str) -> SpannedResult<T>
where
T: de::Deserialize<'a>,
{
Options::default().from_str(s)
}
/// A convenience function for building a deserializer
/// and deserializing a value of type `T` from bytes.
pub fn from_bytes<'a, T>(s: &'a [u8]) -> SpannedResult<T>
where
T: de::Deserialize<'a>,
{
Options::default().from_bytes(s)
}
macro_rules! guard_recursion {
($self:expr => $expr:expr) => {{
if let Some(limit) = &mut $self.recursion_limit {
if let Some(new_limit) = limit.checked_sub(1) {
*limit = new_limit;
} else {
return Err(Error::ExceededRecursionLimit);
}
}
let result = $expr;
if let Some(limit) = &mut $self.recursion_limit {
*limit = limit.saturating_add(1);
}
result
}};
}
impl<'de> Deserializer<'de> {
/// Check if the remaining bytes are whitespace only,
/// otherwise return an error.
pub fn end(&mut self) -> Result<()> {
self.bytes.skip_ws()?;
if self.bytes.bytes().is_empty() {
Ok(())
} else {
Err(Error::TrailingCharacters)
}
}
/// Called from [`deserialize_any`][serde::Deserializer::deserialize_any]
/// when a struct was detected. Decides if there is a unit, tuple or usual
/// struct and deserializes it accordingly.
///
/// This method assumes there is no identifier left.
fn handle_any_struct<V>(&mut self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
// Create a working copy
let mut bytes = self.bytes;
if bytes.consume("(") {
bytes.skip_ws()?;
if bytes.check_tuple_struct()? {
// first argument is technically incorrect, but ignored anyway
self.deserialize_tuple(0, visitor)
} else {
// giving no name results in worse errors but is necessary here
self.handle_struct_after_name("", visitor)
}
} else {
visitor.visit_unit()
}
}
/// Called from
/// [`deserialize_struct`][serde::Deserializer::deserialize_struct],
/// [`struct_variant`][serde::de::VariantAccess::struct_variant], and
/// [`handle_any_struct`][Self::handle_any_struct]. Handles
/// deserialising the enclosing parentheses and everything in between.
///
/// This method assumes there is no struct name identifier left.
fn handle_struct_after_name<V>(
&mut self,
name_for_pretty_errors_only: &'static str,
visitor: V,
) -> Result<V::Value>
where
V: Visitor<'de>,
{
if self.newtype_variant || self.bytes.consume("(") {
let old_newtype_variant = self.newtype_variant;
self.newtype_variant = false;
let value = guard_recursion! { self =>
visitor
.visit_map(CommaSeparated::new(b')', self))
.map_err(|err| {
struct_error_name(
err,
if !old_newtype_variant && !name_for_pretty_errors_only.is_empty() {
Some(name_for_pretty_errors_only)
} else {
None
},
)
})?
};
self.bytes.skip_ws()?;
if old_newtype_variant || self.bytes.consume(")") {
Ok(value)
} else {
Err(Error::ExpectedStructLikeEnd)
}
} else if name_for_pretty_errors_only.is_empty() {
Err(Error::ExpectedStructLike)
} else {
Err(Error::ExpectedNamedStructLike(name_for_pretty_errors_only))
}
}
}
impl<'de, 'a> de::Deserializer<'de> for &'a mut Deserializer<'de> {
type Error = Error;
fn deserialize_any<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
// Newtype variants can only be unwrapped if we receive information
// about the wrapped type - with `deserialize_any` we don't
self.newtype_variant = false;
if self.bytes.consume_ident("true") {
return visitor.visit_bool(true);
} else if self.bytes.consume_ident("false") {
return visitor.visit_bool(false);
} else if self.bytes.check_ident("Some") {
return self.deserialize_option(visitor);
} else if self.bytes.consume_ident("None") {
return visitor.visit_none();
} else if self.bytes.consume("()") {
return visitor.visit_unit();
} else if self.bytes.consume_ident("inf") {
return visitor.visit_f64(std::f64::INFINITY);
} else if self.bytes.consume_ident("-inf") {
return visitor.visit_f64(std::f64::NEG_INFINITY);
} else if self.bytes.consume_ident("NaN") {
return visitor.visit_f64(std::f64::NAN);
}
// `identifier` does not change state if it fails
let ident = self.bytes.identifier().ok();
if ident.is_some() {
self.bytes.skip_ws()?;
return self.handle_any_struct(visitor);
}
match self.bytes.peek_or_eof()? {
b'(' => self.handle_any_struct(visitor),
b'[' => self.deserialize_seq(visitor),
b'{' => self.deserialize_map(visitor),
b'0'..=b'9' | b'+' | b'-' => {
let any_num: AnyNum = self.bytes.any_num()?;
match any_num {
AnyNum::F32(x) => visitor.visit_f32(x),
AnyNum::F64(x) => visitor.visit_f64(x),
AnyNum::I8(x) => visitor.visit_i8(x),
AnyNum::U8(x) => visitor.visit_u8(x),
AnyNum::I16(x) => visitor.visit_i16(x),
AnyNum::U16(x) => visitor.visit_u16(x),
AnyNum::I32(x) => visitor.visit_i32(x),
AnyNum::U32(x) => visitor.visit_u32(x),
AnyNum::I64(x) => visitor.visit_i64(x),
AnyNum::U64(x) => visitor.visit_u64(x),
#[cfg(feature = "integer128")]
AnyNum::I128(x) => visitor.visit_i128(x),
#[cfg(feature = "integer128")]
AnyNum::U128(x) => visitor.visit_u128(x),
}
}
b'.' => self.deserialize_f64(visitor),
b'"' | b'r' => self.deserialize_string(visitor),
b'\'' => self.deserialize_char(visitor),
other => Err(Error::UnexpectedByte(other as char)),
}
}
fn deserialize_bool<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
visitor.visit_bool(self.bytes.bool()?)
}
fn deserialize_i8<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
visitor.visit_i8(self.bytes.signed_integer()?)
}
fn deserialize_i16<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
visitor.visit_i16(self.bytes.signed_integer()?)
}
fn deserialize_i32<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
visitor.visit_i32(self.bytes.signed_integer()?)
}
fn deserialize_i64<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
visitor.visit_i64(self.bytes.signed_integer()?)
}
#[cfg(feature = "integer128")]
fn deserialize_i128<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
visitor.visit_i128(self.bytes.signed_integer()?)
}
fn deserialize_u8<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
visitor.visit_u8(self.bytes.unsigned_integer()?)
}
fn deserialize_u16<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
visitor.visit_u16(self.bytes.unsigned_integer()?)
}
fn deserialize_u32<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
visitor.visit_u32(self.bytes.unsigned_integer()?)
}
fn deserialize_u64<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
visitor.visit_u64(self.bytes.unsigned_integer()?)
}
#[cfg(feature = "integer128")]
fn deserialize_u128<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
visitor.visit_u128(self.bytes.unsigned_integer()?)
}
fn deserialize_f32<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
visitor.visit_f32(self.bytes.float()?)
}
fn deserialize_f64<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
visitor.visit_f64(self.bytes.float()?)
}
fn deserialize_char<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
visitor.visit_char(self.bytes.char()?)
}
fn deserialize_str<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
match self.bytes.string()? {
ParsedStr::Allocated(s) => visitor.visit_string(s),
ParsedStr::Slice(s) => visitor.visit_borrowed_str(s),
}
}
fn deserialize_string<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
self.deserialize_str(visitor)
}
fn deserialize_bytes<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
self.deserialize_byte_buf(visitor)
}
fn deserialize_byte_buf<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
if let Some(b'[') = self.bytes.peek() {
let bytes = Vec::<u8>::deserialize(self)?;
return visitor.visit_byte_buf(bytes);
}
let res = {
let string = self.bytes.string()?;
let base64_str = match string {
ParsedStr::Allocated(ref s) => s.as_str(),
ParsedStr::Slice(s) => s,
};
BASE64_ENGINE.decode(base64_str)
};
match res {
Ok(byte_buf) => visitor.visit_byte_buf(byte_buf),
Err(err) => Err(Error::Base64Error(err)),
}
}
fn deserialize_option<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
if self.bytes.consume("None") {
visitor.visit_none()
} else if self.bytes.consume("Some") && {
self.bytes.skip_ws()?;
self.bytes.consume("(")
} {
self.bytes.skip_ws()?;
let v = guard_recursion! { self => visitor.visit_some(&mut *self)? };
self.bytes.comma()?;
if self.bytes.consume(")") {
Ok(v)
} else {
Err(Error::ExpectedOptionEnd)
}
} else if self.bytes.exts.contains(Extensions::IMPLICIT_SOME) {
guard_recursion! { self => visitor.visit_some(&mut *self) }
} else {
Err(Error::ExpectedOption)
}
}
// In Serde, unit means an anonymous value containing no data.
fn deserialize_unit<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
if self.newtype_variant || self.bytes.consume("()") {
self.newtype_variant = false;
visitor.visit_unit()
} else {
Err(Error::ExpectedUnit)
}
}
fn deserialize_unit_struct<V>(self, name: &'static str, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
if self.newtype_variant || self.bytes.consume_struct_name(name)? {
self.newtype_variant = false;
visitor.visit_unit()
} else {
self.deserialize_unit(visitor)
}
}
fn deserialize_newtype_struct<V>(self, name: &'static str, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
if self.bytes.exts.contains(Extensions::UNWRAP_NEWTYPES) || self.newtype_variant {
self.newtype_variant = false;
return guard_recursion! { self => visitor.visit_newtype_struct(&mut *self) };
}
self.bytes.consume_struct_name(name)?;
self.bytes.skip_ws()?;
if self.bytes.consume("(") {
self.bytes.skip_ws()?;
let value = guard_recursion! { self => visitor.visit_newtype_struct(&mut *self)? };
self.bytes.comma()?;
if self.bytes.consume(")") {
Ok(value)
} else {
Err(Error::ExpectedStructLikeEnd)
}
} else if name.is_empty() {
Err(Error::ExpectedStructLike)
} else {
Err(Error::ExpectedNamedStructLike(name))
}
}
fn deserialize_seq<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
self.newtype_variant = false;
if self.bytes.consume("[") {
let value = guard_recursion! { self =>
visitor.visit_seq(CommaSeparated::new(b']', self))?
};
self.bytes.skip_ws()?;
if self.bytes.consume("]") {
Ok(value)
} else {
Err(Error::ExpectedArrayEnd)
}
} else {
Err(Error::ExpectedArray)
}
}
fn deserialize_tuple<V>(self, _len: usize, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
if self.newtype_variant || self.bytes.consume("(") {
let old_newtype_variant = self.newtype_variant;
self.newtype_variant = false;
let value = guard_recursion! { self =>
visitor.visit_seq(CommaSeparated::new(b')', self))?
};
self.bytes.skip_ws()?;
if old_newtype_variant || self.bytes.consume(")") {
Ok(value)
} else {
Err(Error::ExpectedStructLikeEnd)
}
} else {
Err(Error::ExpectedStructLike)
}
}
fn deserialize_tuple_struct<V>(
self,
name: &'static str,
len: usize,
visitor: V,
) -> Result<V::Value>
where
V: Visitor<'de>,
{
if !self.newtype_variant {
self.bytes.consume_struct_name(name)?;
}
self.deserialize_tuple(len, visitor).map_err(|e| match e {
Error::ExpectedStructLike if !name.is_empty() => Error::ExpectedNamedStructLike(name),
e => e,
})
}
fn deserialize_map<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
self.newtype_variant = false;
if self.bytes.consume("{") {
let value = guard_recursion! { self =>
visitor.visit_map(CommaSeparated::new(b'}', self))?
};
self.bytes.skip_ws()?;
if self.bytes.consume("}") {
Ok(value)
} else {
Err(Error::ExpectedMapEnd)
}
} else {
Err(Error::ExpectedMap)
}
}
fn deserialize_struct<V>(
self,
name: &'static str,
_fields: &'static [&'static str],
visitor: V,
) -> Result<V::Value>
where
V: Visitor<'de>,
{
if !self.newtype_variant {
self.bytes.consume_struct_name(name)?;
}
self.bytes.skip_ws()?;
self.handle_struct_after_name(name, visitor)
}
fn deserialize_enum<V>(
self,
name: &'static str,
_variants: &'static [&'static str],
visitor: V,
) -> Result<V::Value>
where
V: Visitor<'de>,
{
self.newtype_variant = false;
match guard_recursion! { self => visitor.visit_enum(Enum::new(self)) } {
Ok(value) => Ok(value),
Err(Error::NoSuchEnumVariant {
expected,
found,
outer: None,
}) if !name.is_empty() => Err(Error::NoSuchEnumVariant {
expected,
found,
outer: Some(String::from(name)),
}),
Err(e) => Err(e),
}
}
fn deserialize_identifier<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
let identifier = str::from_utf8(self.bytes.identifier()?).map_err(Error::from)?;
self.last_identifier = Some(identifier);
visitor.visit_borrowed_str(identifier)
}
fn deserialize_ignored_any<V>(self, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
self.deserialize_any(visitor)
}
}
struct CommaSeparated<'a, 'de: 'a> {
de: &'a mut Deserializer<'de>,
terminator: u8,
had_comma: bool,
}
impl<'a, 'de> CommaSeparated<'a, 'de> {
fn new(terminator: u8, de: &'a mut Deserializer<'de>) -> Self {
CommaSeparated {
de,
terminator,
had_comma: true,
}
}
fn has_element(&mut self) -> Result<bool> {
self.de.bytes.skip_ws()?;
match (
self.had_comma,
self.de.bytes.peek_or_eof()? != self.terminator,
) {
// Trailing comma, maybe has a next element
(true, has_element) => Ok(has_element),
// No trailing comma but terminator
(false, false) => Ok(false),
// No trailing comma or terminator
(false, true) => Err(Error::ExpectedComma),
}
}
}
impl<'de, 'a> de::SeqAccess<'de> for CommaSeparated<'a, 'de> {
type Error = Error;
fn next_element_seed<T>(&mut self, seed: T) -> Result<Option<T::Value>>
where
T: DeserializeSeed<'de>,
{
if self.has_element()? {
let res = guard_recursion! { self.de => seed.deserialize(&mut *self.de)? };
self.had_comma = self.de.bytes.comma()?;
Ok(Some(res))
} else {
Ok(None)
}
}
}
impl<'de, 'a> de::MapAccess<'de> for CommaSeparated<'a, 'de> {
type Error = Error;
fn next_key_seed<K>(&mut self, seed: K) -> Result<Option<K::Value>>
where
K: DeserializeSeed<'de>,
{
if self.has_element()? {
if self.terminator == b')' {
guard_recursion! { self.de =>
seed.deserialize(&mut IdDeserializer::new(&mut *self.de)).map(Some)
}
} else {
guard_recursion! { self.de => seed.deserialize(&mut *self.de).map(Some) }
}
} else {
Ok(None)
}
}
fn next_value_seed<V>(&mut self, seed: V) -> Result<V::Value>
where
V: DeserializeSeed<'de>,
{
self.de.bytes.skip_ws()?;
if self.de.bytes.consume(":") {
self.de.bytes.skip_ws()?;
let res = guard_recursion! { self.de =>
seed.deserialize(&mut TagDeserializer::new(&mut *self.de))?
};
self.had_comma = self.de.bytes.comma()?;
Ok(res)
} else {
Err(Error::ExpectedMapColon)
}
}
}
struct Enum<'a, 'de: 'a> {
de: &'a mut Deserializer<'de>,
}
impl<'a, 'de> Enum<'a, 'de> {
fn new(de: &'a mut Deserializer<'de>) -> Self {
Enum { de }
}
}
impl<'de, 'a> de::EnumAccess<'de> for Enum<'a, 'de> {
type Error = Error;
type Variant = Self;
fn variant_seed<V>(self, seed: V) -> Result<(V::Value, Self::Variant)>
where
V: DeserializeSeed<'de>,
{
self.de.bytes.skip_ws()?;
let value = guard_recursion! { self.de => seed.deserialize(&mut *self.de)? };
Ok((value, self))
}
}
impl<'de, 'a> de::VariantAccess<'de> for Enum<'a, 'de> {
type Error = Error;
fn unit_variant(self) -> Result<()> {
Ok(())
}
fn newtype_variant_seed<T>(self, seed: T) -> Result<T::Value>
where
T: DeserializeSeed<'de>,
{
let newtype_variant = self.de.last_identifier;
self.de.bytes.skip_ws()?;
if self.de.bytes.consume("(") {
self.de.bytes.skip_ws()?;
self.de.newtype_variant = self
.de
.bytes
.exts
.contains(Extensions::UNWRAP_VARIANT_NEWTYPES);
let val = guard_recursion! { self.de =>
seed
.deserialize(&mut *self.de)
.map_err(|err| struct_error_name(err, newtype_variant))?
};
self.de.newtype_variant = false;
self.de.bytes.comma()?;
if self.de.bytes.consume(")") {
Ok(val)
} else {
Err(Error::ExpectedStructLikeEnd)
}
} else {
Err(Error::ExpectedStructLike)
}
}
fn tuple_variant<V>(self, len: usize, visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
self.de.bytes.skip_ws()?;
self.de.deserialize_tuple(len, visitor)
}
fn struct_variant<V>(self, _fields: &'static [&'static str], visitor: V) -> Result<V::Value>
where
V: Visitor<'de>,
{
let struct_variant = self.de.last_identifier;
self.de.bytes.skip_ws()?;
self.de
.handle_struct_after_name("", visitor)
.map_err(|err| struct_error_name(err, struct_variant))
}
}
fn struct_error_name(error: Error, name: Option<&str>) -> Error {
match error {
Error::NoSuchStructField {
expected,
found,
outer: None,
} => Error::NoSuchStructField {
expected,
found,
outer: name.map(ToOwned::to_owned),
},
Error::MissingStructField { field, outer: None } => Error::MissingStructField {
field,
outer: name.map(ToOwned::to_owned),
},
Error::DuplicateStructField { field, outer: None } => Error::DuplicateStructField {
field,
outer: name.map(ToOwned::to_owned),
},
e => e,
}
}