Revision control
Copy as Markdown
Other Tools
#![cfg_attr(
not(all(feature = "add", feature = "mul")),
allow(dead_code),
allow(unused_mut)
)]
use proc_macro2::TokenStream;
use quote::{format_ident, quote, ToTokens};
use syn::{
parse_quote, punctuated::Punctuated, spanned::Spanned, Attribute, Data,
DeriveInput, Error, Field, Fields, FieldsNamed, FieldsUnnamed, GenericParam,
Generics, Ident, ImplGenerics, Index, Result, Token, Type, TypeGenerics,
TypeParamBound, Variant, WhereClause,
};
#[cfg(any(feature = "from", feature = "into"))]
pub(crate) use self::{either::Either, fields_ext::FieldsExt};
#[derive(Clone, Copy, Default)]
pub struct DeterministicState;
impl std::hash::BuildHasher for DeterministicState {
type Hasher = std::collections::hash_map::DefaultHasher;
fn build_hasher(&self) -> Self::Hasher {
Self::Hasher::default()
}
}
pub type HashMap<K, V> = std::collections::HashMap<K, V, DeterministicState>;
pub type HashSet<K> = std::collections::HashSet<K, DeterministicState>;
#[derive(Clone, Copy, Debug, Eq, PartialEq, Hash)]
pub enum RefType {
No,
Ref,
Mut,
}
impl RefType {
pub fn lifetime(self) -> TokenStream {
match self {
RefType::No => quote! {},
_ => quote! { '__deriveMoreLifetime },
}
}
pub fn reference(self) -> TokenStream {
match self {
RefType::No => quote! {},
RefType::Ref => quote! { & },
RefType::Mut => quote! { &mut },
}
}
pub fn mutability(self) -> TokenStream {
match self {
RefType::Mut => quote! { mut },
_ => quote! {},
}
}
pub fn pattern_ref(self) -> TokenStream {
match self {
RefType::Ref => quote! { ref },
RefType::Mut => quote! { ref mut },
RefType::No => quote! {},
}
}
pub fn reference_with_lifetime(self) -> TokenStream {
if !self.is_ref() {
return quote! {};
}
let lifetime = self.lifetime();
let mutability = self.mutability();
quote! { &#lifetime #mutability }
}
pub fn is_ref(self) -> bool {
!matches!(self, RefType::No)
}
pub fn from_attr_name(name: &str) -> Self {
match name {
"owned" => RefType::No,
"ref" => RefType::Ref,
"ref_mut" => RefType::Mut,
_ => panic!("`{name}` is not a `RefType`"),
}
}
}
pub fn numbered_vars(count: usize, prefix: &str) -> Vec<Ident> {
(0..count).map(|i| format_ident!("__{prefix}{i}")).collect()
}
pub fn field_idents<'a>(fields: &'a [&'a Field]) -> Vec<&'a Ident> {
fields
.iter()
.map(|f| {
f.ident
.as_ref()
.expect("Tried to get field names of a tuple struct")
})
.collect()
}
pub fn get_field_types_iter<'a>(
fields: &'a [&'a Field],
) -> Box<dyn Iterator<Item = &'a Type> + 'a> {
Box::new(fields.iter().map(|f| &f.ty))
}
pub fn get_field_types<'a>(fields: &'a [&'a Field]) -> Vec<&'a Type> {
get_field_types_iter(fields).collect()
}
pub fn add_extra_type_param_bound_op_output<'a>(
generics: &'a Generics,
trait_ident: &'a Ident,
) -> Generics {
let mut generics = generics.clone();
for type_param in &mut generics.type_params_mut() {
let type_ident = &type_param.ident;
let bound: TypeParamBound = parse_quote! {
::core::ops::#trait_ident<Output=#type_ident>
};
type_param.bounds.push(bound)
}
generics
}
pub fn add_extra_ty_param_bound_op<'a>(
generics: &'a Generics,
trait_ident: &'a Ident,
) -> Generics {
add_extra_ty_param_bound(generics, "e! { ::core::ops::#trait_ident })
}
pub fn add_extra_ty_param_bound<'a>(
generics: &'a Generics,
bound: &'a TokenStream,
) -> Generics {
let mut generics = generics.clone();
let bound: TypeParamBound = parse_quote! { #bound };
for type_param in &mut generics.type_params_mut() {
type_param.bounds.push(bound.clone())
}
generics
}
pub fn add_extra_ty_param_bound_ref<'a>(
generics: &'a Generics,
bound: &'a TokenStream,
ref_type: RefType,
) -> Generics {
match ref_type {
RefType::No => add_extra_ty_param_bound(generics, bound),
_ => {
let generics = generics.clone();
let idents = generics.type_params().map(|x| &x.ident);
let ref_with_lifetime = ref_type.reference_with_lifetime();
add_extra_where_clauses(
&generics,
quote! {
where #(#ref_with_lifetime #idents: #bound),*
},
)
}
}
}
pub fn add_extra_generic_param(
generics: &Generics,
generic_param: TokenStream,
) -> Generics {
let generic_param: GenericParam = parse_quote! { #generic_param };
let mut generics = generics.clone();
generics.params.push(generic_param);
generics
}
pub fn add_extra_generic_type_param(
generics: &Generics,
generic_param: TokenStream,
) -> Generics {
let generic_param: GenericParam = parse_quote! { #generic_param };
let lifetimes: Vec<GenericParam> =
generics.lifetimes().map(|x| x.clone().into()).collect();
let type_params: Vec<GenericParam> =
generics.type_params().map(|x| x.clone().into()).collect();
let const_params: Vec<GenericParam> =
generics.const_params().map(|x| x.clone().into()).collect();
let mut generics = generics.clone();
generics.params = Default::default();
generics.params.extend(lifetimes);
generics.params.extend(type_params);
generics.params.push(generic_param);
generics.params.extend(const_params);
generics
}
pub fn add_extra_where_clauses(
generics: &Generics,
type_where_clauses: TokenStream,
) -> Generics {
let mut type_where_clauses: WhereClause = parse_quote! { #type_where_clauses };
let mut new_generics = generics.clone();
if let Some(old_where) = new_generics.where_clause {
type_where_clauses.predicates.extend(old_where.predicates)
}
new_generics.where_clause = Some(type_where_clauses);
new_generics
}
pub fn add_where_clauses_for_new_ident<'a>(
generics: &'a Generics,
fields: &[&'a Field],
type_ident: &Ident,
type_where_clauses: TokenStream,
sized: bool,
) -> Generics {
let generic_param = if fields.len() > 1 {
quote! { #type_ident: ::core::marker::Copy }
} else if sized {
quote! { #type_ident }
} else {
quote! { #type_ident: ?::core::marker::Sized }
};
let generics = add_extra_where_clauses(generics, type_where_clauses);
add_extra_generic_type_param(&generics, generic_param)
}
pub fn unnamed_to_vec(fields: &FieldsUnnamed) -> Vec<&Field> {
fields.unnamed.iter().collect()
}
pub fn named_to_vec(fields: &FieldsNamed) -> Vec<&Field> {
fields.named.iter().collect()
}
fn panic_one_field(trait_name: &str, trait_attr: &str) -> ! {
panic!(
"derive({trait_name}) only works when forwarding to a single field. \
Try putting #[{trait_attr}] or #[{trait_attr}(ignore)] on the fields in the struct",
)
}
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum DeriveType {
Unnamed,
Named,
Enum,
}
pub struct State<'input> {
pub input: &'input DeriveInput,
pub trait_name: &'static str,
pub trait_ident: Ident,
pub method_ident: Ident,
pub trait_path: TokenStream,
pub trait_path_params: Vec<TokenStream>,
pub trait_attr: String,
pub derive_type: DeriveType,
pub fields: Vec<&'input Field>,
pub variants: Vec<&'input Variant>,
pub variant_states: Vec<State<'input>>,
pub variant: Option<&'input Variant>,
pub generics: Generics,
pub default_info: FullMetaInfo,
full_meta_infos: Vec<FullMetaInfo>,
}
#[derive(Default, Clone)]
pub struct AttrParams {
pub enum_: Vec<&'static str>,
pub variant: Vec<&'static str>,
pub struct_: Vec<&'static str>,
pub field: Vec<&'static str>,
}
impl AttrParams {
pub fn new(params: Vec<&'static str>) -> AttrParams {
AttrParams {
enum_: params.clone(),
struct_: params.clone(),
variant: params.clone(),
field: params,
}
}
pub fn struct_(params: Vec<&'static str>) -> AttrParams {
AttrParams {
enum_: vec![],
struct_: params,
variant: vec![],
field: vec![],
}
}
pub fn ignore_and_forward() -> AttrParams {
AttrParams::new(vec!["ignore", "forward"])
}
}
impl<'input> State<'input> {
pub fn new<'arg_input>(
input: &'arg_input DeriveInput,
trait_name: &'static str,
trait_attr: String,
) -> Result<State<'arg_input>> {
State::new_impl(input, trait_name, trait_attr, AttrParams::default(), true)
}
pub fn with_field_ignore<'arg_input>(
input: &'arg_input DeriveInput,
trait_name: &'static str,
trait_attr: String,
) -> Result<State<'arg_input>> {
State::new_impl(
input,
trait_name,
trait_attr,
AttrParams::new(vec!["ignore"]),
true,
)
}
pub fn with_field_ignore_and_forward<'arg_input>(
input: &'arg_input DeriveInput,
trait_name: &'static str,
trait_attr: String,
) -> Result<State<'arg_input>> {
State::new_impl(
input,
trait_name,
trait_attr,
AttrParams::new(vec!["ignore", "forward"]),
true,
)
}
pub fn with_field_ignore_and_refs<'arg_input>(
input: &'arg_input DeriveInput,
trait_name: &'static str,
trait_attr: String,
) -> Result<State<'arg_input>> {
State::new_impl(
input,
trait_name,
trait_attr,
AttrParams::new(vec!["ignore", "owned", "ref", "ref_mut"]),
true,
)
}
pub fn with_attr_params<'arg_input>(
input: &'arg_input DeriveInput,
trait_name: &'static str,
trait_attr: String,
allowed_attr_params: AttrParams,
) -> Result<State<'arg_input>> {
State::new_impl(input, trait_name, trait_attr, allowed_attr_params, true)
}
pub fn with_type_bound<'arg_input>(
input: &'arg_input DeriveInput,
trait_name: &'static str,
trait_attr: String,
allowed_attr_params: AttrParams,
add_type_bound: bool,
) -> Result<State<'arg_input>> {
Self::new_impl(
input,
trait_name,
trait_attr,
allowed_attr_params,
add_type_bound,
)
}
fn new_impl<'arg_input>(
input: &'arg_input DeriveInput,
trait_name: &'static str,
trait_attr: String,
allowed_attr_params: AttrParams,
add_type_bound: bool,
) -> Result<State<'arg_input>> {
let trait_name = trait_name.trim_end_matches("ToInner");
let trait_ident = format_ident!("{trait_name}");
let method_ident = format_ident!("{trait_attr}");
let trait_path = quote! { ::derive_more::#trait_ident };
let (derive_type, fields, variants): (_, Vec<_>, Vec<_>) = match input.data {
Data::Struct(ref data_struct) => match data_struct.fields {
Fields::Unnamed(ref fields) => {
(DeriveType::Unnamed, unnamed_to_vec(fields), vec![])
}
Fields::Named(ref fields) => {
(DeriveType::Named, named_to_vec(fields), vec![])
}
Fields::Unit => (DeriveType::Named, vec![], vec![]),
},
Data::Enum(ref data_enum) => (
DeriveType::Enum,
vec![],
data_enum.variants.iter().collect(),
),
Data::Union(_) => {
panic!("cannot derive({trait_name}) for union")
}
};
let attrs: Vec<_> = if derive_type == DeriveType::Enum {
variants.iter().map(|v| &v.attrs).collect()
} else {
fields.iter().map(|f| &f.attrs).collect()
};
let (allowed_attr_params_outer, allowed_attr_params_inner) =
if derive_type == DeriveType::Enum {
(&allowed_attr_params.enum_, &allowed_attr_params.variant)
} else {
(&allowed_attr_params.struct_, &allowed_attr_params.field)
};
let struct_meta_info =
get_meta_info(&trait_attr, &input.attrs, allowed_attr_params_outer)?;
let meta_infos: Result<Vec<_>> = attrs
.iter()
.map(|attrs| get_meta_info(&trait_attr, attrs, allowed_attr_params_inner))
.collect();
let meta_infos = meta_infos?;
let first_match = meta_infos
.iter()
.filter_map(|info| info.enabled.map(|_| info))
.next();
// Default to enabled true, except when first attribute has explicit
// enabling.
//
// Except for derive Error.
//
// The way `else` case works is that if any field have any valid
// attribute specified, then all fields without any attributes
// specified are filtered out from `State::enabled_fields`.
//
// However, derive Error *infers* fields and there are cases when
// one of the fields may have an attribute specified, but another field
// would be inferred. So, for derive Error macro we default enabled
// to true unconditionally (i.e., even if some fields have attributes
// specified).
let default_enabled = if trait_name == "Error" {
true
} else {
first_match.map_or(true, |info| !info.enabled.unwrap())
};
let defaults = struct_meta_info.into_full(FullMetaInfo {
enabled: default_enabled,
forward: false,
// Default to owned true, except when first attribute has one of owned,
// ref or ref_mut
// - not a single attribute means default true
// - an attribute, but non of owned, ref or ref_mut means default true
// - an attribute, and owned, ref or ref_mut means default false
owned: first_match.map_or(true, |info| {
info.owned.is_none() && info.ref_.is_none() || info.ref_mut.is_none()
}),
ref_: false,
ref_mut: false,
info: MetaInfo::default(),
});
let full_meta_infos: Vec<_> = meta_infos
.into_iter()
.map(|info| info.into_full(defaults.clone()))
.collect();
let variant_states: Result<Vec<_>> = if derive_type == DeriveType::Enum {
variants
.iter()
.zip(full_meta_infos.iter().cloned())
.map(|(variant, info)| {
State::from_variant(
input,
trait_name,
trait_attr.clone(),
allowed_attr_params.clone(),
variant,
info,
)
})
.collect()
} else {
Ok(vec![])
};
let generics = if add_type_bound {
add_extra_ty_param_bound(&input.generics, &trait_path)
} else {
input.generics.clone()
};
Ok(State {
input,
trait_name,
trait_ident,
method_ident,
trait_path,
trait_path_params: vec![],
trait_attr,
// input,
fields,
variants,
variant_states: variant_states?,
variant: None,
derive_type,
generics,
full_meta_infos,
default_info: defaults,
})
}
pub fn from_variant<'arg_input>(
input: &'arg_input DeriveInput,
trait_name: &'static str,
trait_attr: String,
allowed_attr_params: AttrParams,
variant: &'arg_input Variant,
default_info: FullMetaInfo,
) -> Result<State<'arg_input>> {
let trait_name = trait_name.trim_end_matches("ToInner");
let trait_ident = format_ident!("{trait_name}");
let method_ident = format_ident!("{trait_attr}");
let trait_path = quote! { ::derive_more::#trait_ident };
let (derive_type, fields): (_, Vec<_>) = match variant.fields {
Fields::Unnamed(ref fields) => {
(DeriveType::Unnamed, unnamed_to_vec(fields))
}
Fields::Named(ref fields) => (DeriveType::Named, named_to_vec(fields)),
Fields::Unit => (DeriveType::Named, vec![]),
};
let meta_infos: Result<Vec<_>> = fields
.iter()
.map(|f| &f.attrs)
.map(|attrs| get_meta_info(&trait_attr, attrs, &allowed_attr_params.field))
.collect();
let meta_infos = meta_infos?;
let full_meta_infos: Vec<_> = meta_infos
.into_iter()
.map(|info| info.into_full(default_info.clone()))
.collect();
let generics = add_extra_ty_param_bound(&input.generics, &trait_path);
Ok(State {
input,
trait_name,
trait_path,
trait_path_params: vec![],
trait_attr,
trait_ident,
method_ident,
// input,
fields,
variants: vec![],
variant_states: vec![],
variant: Some(variant),
derive_type,
generics,
full_meta_infos,
default_info,
})
}
pub fn add_trait_path_type_param(&mut self, param: TokenStream) {
self.trait_path_params.push(param);
}
pub fn assert_single_enabled_field<'state>(
&'state self,
) -> SingleFieldData<'input, 'state> {
if self.derive_type == DeriveType::Enum {
panic_one_field(self.trait_name, &self.trait_attr);
}
let data = self.enabled_fields_data();
if data.fields.len() != 1 {
panic_one_field(self.trait_name, &self.trait_attr);
};
SingleFieldData {
input_type: data.input_type,
field: data.fields[0],
field_type: data.field_types[0],
member: data.members[0].clone(),
info: data.infos[0].clone(),
field_ident: data.field_idents[0].clone(),
trait_path: data.trait_path,
trait_path_with_params: data.trait_path_with_params.clone(),
casted_trait: data.casted_traits[0].clone(),
impl_generics: data.impl_generics.clone(),
ty_generics: data.ty_generics.clone(),
where_clause: data.where_clause,
multi_field_data: data,
}
}
pub fn enabled_fields_data<'state>(&'state self) -> MultiFieldData<'input, 'state> {
if self.derive_type == DeriveType::Enum {
panic!("cannot derive({}) for enum", self.trait_name)
}
let fields = self.enabled_fields();
let field_idents = self.enabled_fields_idents();
let field_indexes = self.enabled_fields_indexes();
let field_types: Vec<_> = fields.iter().map(|f| &f.ty).collect();
let members: Vec<_> = field_idents
.iter()
.map(|ident| quote! { self.#ident })
.collect();
let trait_path = &self.trait_path;
let trait_path_with_params = if !self.trait_path_params.is_empty() {
let params = self.trait_path_params.iter();
quote! { #trait_path<#(#params),*> }
} else {
self.trait_path.clone()
};
let casted_traits: Vec<_> = field_types
.iter()
.map(|field_type| quote! { <#field_type as #trait_path_with_params> })
.collect();
let (impl_generics, ty_generics, where_clause) = self.generics.split_for_impl();
let input_type = &self.input.ident;
let (variant_name, variant_type) = self.variant.map_or_else(
|| (None, quote! { #input_type }),
|v| {
let variant_name = &v.ident;
(Some(variant_name), quote! { #input_type::#variant_name })
},
);
MultiFieldData {
input_type,
variant_type,
variant_name,
variant_info: self.default_info.clone(),
fields,
field_types,
field_indexes,
members,
infos: self.enabled_infos(),
field_idents,
method_ident: &self.method_ident,
trait_path,
trait_path_with_params,
casted_traits,
impl_generics,
ty_generics,
where_clause,
state: self,
}
}
pub fn enabled_variant_data<'state>(
&'state self,
) -> MultiVariantData<'input, 'state> {
if self.derive_type != DeriveType::Enum {
panic!("can only derive({}) for enum", self.trait_name)
}
let variants = self.enabled_variants();
let trait_path = &self.trait_path;
let (impl_generics, ty_generics, where_clause) = self.generics.split_for_impl();
MultiVariantData {
input_type: &self.input.ident,
variants,
variant_states: self.enabled_variant_states(),
infos: self.enabled_infos(),
trait_path,
impl_generics,
ty_generics,
where_clause,
}
}
fn enabled_variants(&self) -> Vec<&'input Variant> {
self.variants
.iter()
.zip(self.full_meta_infos.iter().map(|info| info.enabled))
.filter(|(_, ig)| *ig)
.map(|(v, _)| *v)
.collect()
}
fn enabled_variant_states(&self) -> Vec<&State<'input>> {
self.variant_states
.iter()
.zip(self.full_meta_infos.iter().map(|info| info.enabled))
.filter(|(_, ig)| *ig)
.map(|(v, _)| v)
.collect()
}
pub fn enabled_fields(&self) -> Vec<&'input Field> {
self.fields
.iter()
.zip(self.full_meta_infos.iter().map(|info| info.enabled))
.filter(|(_, ig)| *ig)
.map(|(f, _)| *f)
.collect()
}
fn field_idents(&self) -> Vec<TokenStream> {
if self.derive_type == DeriveType::Named {
self.fields
.iter()
.map(|f| {
f.ident
.as_ref()
.expect("Tried to get field names of a tuple struct")
.to_token_stream()
})
.collect()
} else {
let count = self.fields.len();
(0..count)
.map(|i| Index::from(i).to_token_stream())
.collect()
}
}
fn enabled_fields_idents(&self) -> Vec<TokenStream> {
self.field_idents()
.into_iter()
.zip(self.full_meta_infos.iter().map(|info| info.enabled))
.filter(|(_, ig)| *ig)
.map(|(f, _)| f)
.collect()
}
fn enabled_fields_indexes(&self) -> Vec<usize> {
self.full_meta_infos
.iter()
.map(|info| info.enabled)
.enumerate()
.filter(|(_, ig)| *ig)
.map(|(i, _)| i)
.collect()
}
fn enabled_infos(&self) -> Vec<FullMetaInfo> {
self.full_meta_infos
.iter()
.filter(|info| info.enabled)
.cloned()
.collect()
}
}
#[derive(Clone)]
pub struct SingleFieldData<'input, 'state> {
pub input_type: &'input Ident,
pub field: &'input Field,
pub field_type: &'input Type,
pub field_ident: TokenStream,
pub member: TokenStream,
pub info: FullMetaInfo,
pub trait_path: &'state TokenStream,
pub trait_path_with_params: TokenStream,
pub casted_trait: TokenStream,
pub impl_generics: ImplGenerics<'state>,
pub ty_generics: TypeGenerics<'state>,
pub where_clause: Option<&'state WhereClause>,
multi_field_data: MultiFieldData<'input, 'state>,
}
#[derive(Clone)]
pub struct MultiFieldData<'input, 'state> {
pub input_type: &'input Ident,
pub variant_type: TokenStream,
pub variant_name: Option<&'input Ident>,
pub variant_info: FullMetaInfo,
pub fields: Vec<&'input Field>,
pub field_types: Vec<&'input Type>,
pub field_idents: Vec<TokenStream>,
pub field_indexes: Vec<usize>,
pub members: Vec<TokenStream>,
pub infos: Vec<FullMetaInfo>,
pub method_ident: &'state Ident,
pub trait_path: &'state TokenStream,
pub trait_path_with_params: TokenStream,
pub casted_traits: Vec<TokenStream>,
pub impl_generics: ImplGenerics<'state>,
pub ty_generics: TypeGenerics<'state>,
pub where_clause: Option<&'state WhereClause>,
pub state: &'state State<'input>,
}
pub struct MultiVariantData<'input, 'state> {
pub input_type: &'input Ident,
pub variants: Vec<&'input Variant>,
pub variant_states: Vec<&'state State<'input>>,
pub infos: Vec<FullMetaInfo>,
pub trait_path: &'state TokenStream,
pub impl_generics: ImplGenerics<'state>,
pub ty_generics: TypeGenerics<'state>,
pub where_clause: Option<&'state WhereClause>,
}
impl<'input, 'state> MultiFieldData<'input, 'state> {
pub fn initializer<T: ToTokens>(&self, initializers: &[T]) -> TokenStream {
let MultiFieldData {
variant_type,
field_idents,
..
} = self;
if self.state.derive_type == DeriveType::Named {
quote! { #variant_type{#(#field_idents: #initializers),*} }
} else {
quote! { #variant_type(#(#initializers),*) }
}
}
pub fn matcher<T: ToTokens>(
&self,
indexes: &[usize],
bindings: &[T],
) -> TokenStream {
let MultiFieldData { variant_type, .. } = self;
let full_bindings = (0..self.state.fields.len()).map(|i| {
indexes.iter().position(|index| i == *index).map_or_else(
|| quote! { _ },
|found_index| bindings[found_index].to_token_stream(),
)
});
if self.state.derive_type == DeriveType::Named {
let field_idents = self.state.field_idents();
quote! { #variant_type{#(#field_idents: #full_bindings),*} }
} else {
quote! { #variant_type(#(#full_bindings),*) }
}
}
}
impl<'input, 'state> SingleFieldData<'input, 'state> {
pub fn initializer<T: ToTokens>(&self, initializers: &[T]) -> TokenStream {
self.multi_field_data.initializer(initializers)
}
}
fn get_meta_info(
trait_attr: &str,
attrs: &[Attribute],
allowed_attr_params: &[&str],
) -> Result<MetaInfo> {
let mut it = attrs.iter().filter(|a| {
a.meta
.path()
.segments
.first()
.map(|p| p.ident == trait_attr)
.unwrap_or_default()
});
let mut info = MetaInfo::default();
let Some(attr) = it.next() else {
return Ok(info);
};
if allowed_attr_params.is_empty() {
return Err(Error::new(attr.span(), "Attribute is not allowed here"));
}
info.enabled = Some(true);
if let Some(another_attr) = it.next() {
return Err(Error::new(
another_attr.span(),
"Only a single attribute is allowed",
));
}
let list = match &attr.meta {
syn::Meta::Path(_) => {
if allowed_attr_params.contains(&"ignore") {
return Ok(info);
} else {
return Err(Error::new(
attr.span(),
format!(
"Empty attribute is not allowed, add one of the following parameters: {}",
allowed_attr_params.join(", "),
),
));
}
}
syn::Meta::List(list) => list,
syn::Meta::NameValue(val) => {
return Err(Error::new(
val.span(),
"Attribute doesn't support name-value format here",
));
}
};
parse_punctuated_nested_meta(
&mut info,
&list.parse_args_with(Punctuated::parse_terminated)?,
allowed_attr_params,
None,
)?;
Ok(info)
}
fn parse_punctuated_nested_meta(
info: &mut MetaInfo,
meta: &Punctuated<polyfill::Meta, Token![,]>,
allowed_attr_params: &[&str],
wrapper_name: Option<&str>,
) -> Result<()> {
for meta in meta.iter() {
match meta {
polyfill::Meta::List(list) if list.path.is_ident("not") => {
if wrapper_name.is_some() {
// Only single top-level `not` attribute is allowed.
return Err(Error::new(
list.span(),
"Attribute doesn't support multiple multiple or nested `not` parameters",
));
}
parse_punctuated_nested_meta(
info,
&list.parse_args_with(Punctuated::parse_terminated)?,
allowed_attr_params,
Some("not"),
)?;
}
polyfill::Meta::List(list) => {
let path = &list.path;
if !allowed_attr_params.iter().any(|param| path.is_ident(param)) {
return Err(Error::new(
meta.span(),
format!(
"Attribute nested parameter not supported. \
Supported attribute parameters are: {}",
allowed_attr_params.join(", "),
),
));
}
let mut parse_nested = true;
let attr_name = path.get_ident().unwrap().to_string();
match (wrapper_name, attr_name.as_str()) {
(None, "owned") => info.owned = Some(true),
(None, "ref") => info.ref_ = Some(true),
(None, "ref_mut") => info.ref_mut = Some(true),
#[cfg(any(feature = "from", feature = "into"))]
(None, "types")
| (Some("owned"), "types")
| (Some("ref"), "types")
| (Some("ref_mut"), "types") => {
parse_nested = false;
for meta in &list.parse_args_with(
Punctuated::<polyfill::NestedMeta, syn::token::Comma>::parse_terminated,
)? {
let typ: syn::Type = match meta {
polyfill::NestedMeta::Meta(meta) => {
let polyfill::Meta::Path(path) = meta else {
return Err(Error::new(
meta.span(),
format!(
"Attribute doesn't support type {}",
quote! { #meta },
),
));
};
syn::TypePath {
qself: None,
path: path.clone().into(),
}
.into()
}
polyfill::NestedMeta::Lit(syn::Lit::Str(s)) => s.parse()?,
polyfill::NestedMeta::Lit(lit) => return Err(Error::new(
lit.span(),
"Attribute doesn't support nested literals here",
)),
};
for ref_type in wrapper_name
.map(|n| vec![RefType::from_attr_name(n)])
.unwrap_or_else(|| {
vec![RefType::No, RefType::Ref, RefType::Mut]
})
{
if info
.types
.entry(ref_type)
.or_default()
.replace(typ.clone())
.is_some()
{
return Err(Error::new(
typ.span(),
format!(
"Duplicate type `{}` specified",
quote! { #path },
),
));
}
}
}
}
_ => {
return Err(Error::new(
list.span(),
format!(
"Attribute doesn't support nested parameter `{}` here",
quote! { #path },
),
))
}
};
if parse_nested {
parse_punctuated_nested_meta(
info,
&list.parse_args_with(Punctuated::parse_terminated)?,
allowed_attr_params,
Some(&attr_name),
)?;
}
}
polyfill::Meta::Path(path) => {
if !allowed_attr_params.iter().any(|param| path.is_ident(param)) {
return Err(Error::new(
meta.span(),
format!(
"Attribute parameter not supported. \
Supported attribute parameters are: {}",
allowed_attr_params.join(", "),
),
));
}
let attr_name = path.get_ident().unwrap().to_string();
match (wrapper_name, attr_name.as_str()) {
(None, "ignore") => info.enabled = Some(false),
(None, "forward") => info.forward = Some(true),
(Some("not"), "forward") => info.forward = Some(false),
(None, "owned") => info.owned = Some(true),
(None, "ref") => info.ref_ = Some(true),
(None, "ref_mut") => info.ref_mut = Some(true),
(None, "source") => info.source = Some(true),
(Some("not"), "source") => info.source = Some(false),
(None, "backtrace") => info.backtrace = Some(true),
(Some("not"), "backtrace") => info.backtrace = Some(false),
_ => {
return Err(Error::new(
path.span(),
format!(
"Attribute doesn't support parameter `{}` here",
quote! { #path }
),
))
}
}
}
}
}
Ok(())
}
// TODO: Remove this eventually, once all macros migrate to
// custom typed attributes parsing.
/// Polyfill for [`syn`] 1.x AST.
pub(crate) mod polyfill {
use proc_macro2::TokenStream;
use quote::ToTokens;
use syn::{
ext::IdentExt as _,
parse::{Parse, ParseStream, Parser},
token, Token,
};
#[derive(Clone)]
pub(crate) enum PathOrKeyword {
Path(syn::Path),
Keyword(syn::Ident),
}
impl Parse for PathOrKeyword {
fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
if input.fork().parse::<syn::Path>().is_ok() {
return input.parse().map(Self::Path);
}
syn::Ident::parse_any(input).map(Self::Keyword)
}
}
impl ToTokens for PathOrKeyword {
fn to_tokens(&self, tokens: &mut TokenStream) {
match self {
Self::Path(p) => p.to_tokens(tokens),
Self::Keyword(i) => i.to_tokens(tokens),
}
}
}
impl PathOrKeyword {
pub(crate) fn is_ident<I: ?Sized>(&self, ident: &I) -> bool
where
syn::Ident: PartialEq<I>,
{
match self {
Self::Path(p) => p.is_ident(ident),
Self::Keyword(i) => i == ident,
}
}
pub fn get_ident(&self) -> Option<&syn::Ident> {
match self {
Self::Path(p) => p.get_ident(),
Self::Keyword(i) => Some(i),
}
}
}
impl From<PathOrKeyword> for syn::Path {
fn from(p: PathOrKeyword) -> Self {
match p {
PathOrKeyword::Path(p) => p,
PathOrKeyword::Keyword(i) => i.into(),
}
}
}
#[derive(Clone)]
pub(crate) struct MetaList {
pub(crate) path: PathOrKeyword,
pub(crate) tokens: TokenStream,
}
impl Parse for MetaList {
fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
let path = input.parse::<PathOrKeyword>()?;
let tokens;
_ = syn::parenthesized!(tokens in input);
Ok(Self {
path,
tokens: tokens.parse()?,
})
}
}
impl ToTokens for MetaList {
fn to_tokens(&self, tokens: &mut TokenStream) {
self.path.to_tokens(tokens);
token::Paren::default()
.surround(tokens, |tokens| self.tokens.to_tokens(tokens))
}
}
impl MetaList {
pub fn parse_args_with<F: Parser>(&self, parser: F) -> syn::Result<F::Output> {
parser.parse2(self.tokens.clone())
}
}
#[derive(Clone)]
pub(crate) enum Meta {
Path(PathOrKeyword),
List(MetaList),
}
impl Parse for Meta {
fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
let path = input.parse::<PathOrKeyword>()?;
Ok(if input.peek(token::Paren) {
let tokens;
_ = syn::parenthesized!(tokens in input);
Self::List(MetaList {
path,
tokens: tokens.parse()?,
})
} else {
Self::Path(path)
})
}
}
impl ToTokens for Meta {
fn to_tokens(&self, tokens: &mut TokenStream) {
match self {
Self::Path(p) => p.to_tokens(tokens),
Self::List(l) => l.to_tokens(tokens),
}
}
}
#[derive(Clone)]
pub(crate) enum NestedMeta {
Meta(Meta),
Lit(syn::Lit),
}
impl Parse for NestedMeta {
fn parse(input: ParseStream<'_>) -> syn::Result<Self> {
if input.peek(syn::Lit)
&& !(input.peek(syn::LitBool) && input.peek2(Token![=]))
{
input.parse().map(Self::Lit)
} else if input.peek(syn::Ident::peek_any)
|| input.peek(Token![::]) && input.peek3(syn::Ident::peek_any)
{
input.parse().map(Self::Meta)
} else {
Err(input.error("expected identifier or literal"))
}
}
}
impl ToTokens for NestedMeta {
fn to_tokens(&self, tokens: &mut TokenStream) {
match self {
Self::Meta(m) => m.to_tokens(tokens),
Self::Lit(l) => l.to_tokens(tokens),
}
}
}
}
#[derive(Clone, Debug, Default)]
pub struct FullMetaInfo {
pub enabled: bool,
pub forward: bool,
pub owned: bool,
pub ref_: bool,
pub ref_mut: bool,
pub info: MetaInfo,
}
#[derive(Clone, Debug, Default)]
pub struct MetaInfo {
pub enabled: Option<bool>,
pub forward: Option<bool>,
pub owned: Option<bool>,
pub ref_: Option<bool>,
pub ref_mut: Option<bool>,
pub source: Option<bool>,
pub backtrace: Option<bool>,
#[cfg(any(feature = "from", feature = "into"))]
pub types: HashMap<RefType, HashSet<syn::Type>>,
}
impl MetaInfo {
fn into_full(self, defaults: FullMetaInfo) -> FullMetaInfo {
FullMetaInfo {
enabled: self.enabled.unwrap_or(defaults.enabled),
forward: self.forward.unwrap_or(defaults.forward),
owned: self.owned.unwrap_or(defaults.owned),
ref_: self.ref_.unwrap_or(defaults.ref_),
ref_mut: self.ref_mut.unwrap_or(defaults.ref_mut),
info: self,
}
}
}
impl FullMetaInfo {
pub fn ref_types(&self) -> Vec<RefType> {
let mut ref_types = vec![];
if self.owned {
ref_types.push(RefType::No);
}
if self.ref_ {
ref_types.push(RefType::Ref);
}
if self.ref_mut {
ref_types.push(RefType::Mut);
}
ref_types
}
}
pub fn get_if_type_parameter_used_in_type(
type_parameters: &HashSet<syn::Ident>,
ty: &syn::Type,
) -> Option<syn::Type> {
is_type_parameter_used_in_type(type_parameters, ty).then(|| match ty {
syn::Type::Reference(syn::TypeReference { elem: ty, .. }) => (**ty).clone(),
ty => ty.clone(),
})
}
pub fn is_type_parameter_used_in_type(
type_parameters: &HashSet<syn::Ident>,
ty: &syn::Type,
) -> bool {
match ty {
syn::Type::Path(ty) => {
if let Some(qself) = &ty.qself {
if is_type_parameter_used_in_type(type_parameters, &qself.ty) {
return true;
}
}
if let Some(segment) = ty.path.segments.first() {
if type_parameters.contains(&segment.ident) {
return true;
}
}
ty.path.segments.iter().any(|segment| {
if let syn::PathArguments::AngleBracketed(arguments) =
&segment.arguments
{
arguments.args.iter().any(|argument| match argument {
syn::GenericArgument::Type(ty) => {
is_type_parameter_used_in_type(type_parameters, ty)
}
syn::GenericArgument::Constraint(constraint) => {
type_parameters.contains(&constraint.ident)
}
_ => false,
})
} else {
false
}
})
}
syn::Type::Reference(ty) => {
is_type_parameter_used_in_type(type_parameters, &ty.elem)
}
_ => false,
}
}
#[cfg(any(feature = "from", feature = "into"))]
mod either {
use proc_macro2::TokenStream;
use quote::ToTokens;
/// Either [`Left`] or [`Right`].
///
/// [`Left`]: Either::Left
/// [`Right`]: Either::Right
pub(crate) enum Either<L, R> {
/// Left variant.
Left(L),
/// Right variant.
Right(R),
}
impl<L, R, T> Iterator for Either<L, R>
where
L: Iterator<Item = T>,
R: Iterator<Item = T>,
{
type Item = T;
fn next(&mut self) -> Option<Self::Item> {
match self {
Either::Left(left) => left.next(),
Either::Right(right) => right.next(),
}
}
}
impl<L, R> ToTokens for Either<L, R>
where
L: ToTokens,
R: ToTokens,
{
fn to_tokens(&self, tokens: &mut TokenStream) {
match self {
Either::Left(l) => l.to_tokens(tokens),
Either::Right(r) => r.to_tokens(tokens),
}
}
}
}
#[cfg(any(feature = "from", feature = "into"))]
mod fields_ext {
use std::{cmp, iter};
use proc_macro2::TokenStream;
use syn::{punctuated, spanned::Spanned as _};
use crate::parsing;
use super::Either;
/// Abstraction over `.len()` method to use it on type parameters.
pub(crate) trait Len {
/// Returns number of fields.
fn len(&self) -> usize;
}
impl Len for syn::Fields {
fn len(&self) -> usize {
self.len()
}
}
impl<T> Len for Vec<T> {
fn len(&self) -> usize {
self.len()
}
}
/// [`syn::Fields`] extension.
pub(crate) trait FieldsExt: Len {
/// Validates the provided [`parsing::Type`] against these [`syn::Fields`].
fn validate_type<'t>(
&self,
ty: &'t parsing::Type,
) -> syn::Result<
Either<punctuated::Iter<'t, TokenStream>, iter::Once<&'t TokenStream>>,
> {
match ty {
parsing::Type::Tuple { items, .. } if self.len() > 1 => {
match self.len().cmp(&items.len()) {
cmp::Ordering::Greater => {
return Err(syn::Error::new(
ty.span(),
format!(
"wrong tuple length: expected {}, found {}. \
Consider adding {} more type{}: `({})`",
self.len(),
items.len(),
self.len() - items.len(),
if self.len() - items.len() > 1 {
"s"
} else {
""
},
items
.iter()
.map(|item| item.to_string())
.chain(
(0..(self.len() - items.len()))
.map(|_| "_".to_string())
)
.collect::<Vec<_>>()
.join(", "),
),
));
}
cmp::Ordering::Less => {
return Err(syn::Error::new(
ty.span(),
format!(
"wrong tuple length: expected {}, found {}. \
Consider removing last {} type{}: `({})`",
self.len(),
items.len(),
items.len() - self.len(),
if items.len() - self.len() > 1 {
"s"
} else {
""
},
items
.iter()
.take(self.len())
.map(ToString::to_string)
.collect::<Vec<_>>()
.join(", "),
),
));
}
cmp::Ordering::Equal => {}
}
}
parsing::Type::Other(other) if self.len() > 1 => {
if self.len() > 1 {
return Err(syn::Error::new(
other.span(),
format!(
"expected tuple: `({}, {})`",
other,
(0..(self.len() - 1))
.map(|_| "_")
.collect::<Vec<_>>()
.join(", "),
),
));
}
}
parsing::Type::Tuple { .. } | parsing::Type::Other(_) => {}
}
Ok(match ty {
parsing::Type::Tuple { items, .. } => Either::Left(items.iter()),
parsing::Type::Other(other) => Either::Right(iter::once(other)),
})
}
}
impl<T: Len + ?Sized> FieldsExt for T {}
}