Revision control

Copy as Markdown

Other Tools

//! Unbounded channel implemented as a linked list.
use std::boxed::Box;
use std::cell::UnsafeCell;
use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::ptr;
use std::sync::atomic::{self, AtomicPtr, AtomicUsize, Ordering};
use std::time::Instant;
use crossbeam_utils::{Backoff, CachePadded};
use crate::context::Context;
use crate::err::{RecvTimeoutError, SendTimeoutError, TryRecvError, TrySendError};
use crate::select::{Operation, SelectHandle, Selected, Token};
use crate::waker::SyncWaker;
// TODO(stjepang): Once we bump the minimum required Rust version to 1.28 or newer, re-apply the
// following changes by @kleimkuhler:
//
// Bits indicating the state of a slot:
// * If a message has been written into the slot, `WRITE` is set.
// * If a message has been read from the slot, `READ` is set.
// * If the block is being destroyed, `DESTROY` is set.
const WRITE: usize = 1;
const READ: usize = 2;
const DESTROY: usize = 4;
// Each block covers one "lap" of indices.
const LAP: usize = 32;
// The maximum number of messages a block can hold.
const BLOCK_CAP: usize = LAP - 1;
// How many lower bits are reserved for metadata.
const SHIFT: usize = 1;
// Has two different purposes:
// * If set in head, indicates that the block is not the last one.
// * If set in tail, indicates that the channel is disconnected.
const MARK_BIT: usize = 1;
/// A slot in a block.
struct Slot<T> {
/// The message.
msg: UnsafeCell<MaybeUninit<T>>,
/// The state of the slot.
state: AtomicUsize,
}
impl<T> Slot<T> {
const UNINIT: Self = Self {
msg: UnsafeCell::new(MaybeUninit::uninit()),
state: AtomicUsize::new(0),
};
/// Waits until a message is written into the slot.
fn wait_write(&self) {
let backoff = Backoff::new();
while self.state.load(Ordering::Acquire) & WRITE == 0 {
backoff.snooze();
}
}
}
/// A block in a linked list.
///
/// Each block in the list can hold up to `BLOCK_CAP` messages.
struct Block<T> {
/// The next block in the linked list.
next: AtomicPtr<Block<T>>,
/// Slots for messages.
slots: [Slot<T>; BLOCK_CAP],
}
impl<T> Block<T> {
/// Creates an empty block.
fn new() -> Block<T> {
Self {
next: AtomicPtr::new(ptr::null_mut()),
slots: [Slot::UNINIT; BLOCK_CAP],
}
}
/// Waits until the next pointer is set.
fn wait_next(&self) -> *mut Block<T> {
let backoff = Backoff::new();
loop {
let next = self.next.load(Ordering::Acquire);
if !next.is_null() {
return next;
}
backoff.snooze();
}
}
/// Sets the `DESTROY` bit in slots starting from `start` and destroys the block.
unsafe fn destroy(this: *mut Block<T>, start: usize) {
// It is not necessary to set the `DESTROY` bit in the last slot because that slot has
// begun destruction of the block.
for i in start..BLOCK_CAP - 1 {
let slot = (*this).slots.get_unchecked(i);
// Mark the `DESTROY` bit if a thread is still using the slot.
if slot.state.load(Ordering::Acquire) & READ == 0
&& slot.state.fetch_or(DESTROY, Ordering::AcqRel) & READ == 0
{
// If a thread is still using the slot, it will continue destruction of the block.
return;
}
}
// No thread is using the block, now it is safe to destroy it.
drop(Box::from_raw(this));
}
}
/// A position in a channel.
#[derive(Debug)]
struct Position<T> {
/// The index in the channel.
index: AtomicUsize,
/// The block in the linked list.
block: AtomicPtr<Block<T>>,
}
/// The token type for the list flavor.
#[derive(Debug)]
pub(crate) struct ListToken {
/// The block of slots.
block: *const u8,
/// The offset into the block.
offset: usize,
}
impl Default for ListToken {
#[inline]
fn default() -> Self {
ListToken {
block: ptr::null(),
offset: 0,
}
}
}
/// Unbounded channel implemented as a linked list.
///
/// Each message sent into the channel is assigned a sequence number, i.e. an index. Indices are
/// represented as numbers of type `usize` and wrap on overflow.
///
/// Consecutive messages are grouped into blocks in order to put less pressure on the allocator and
/// improve cache efficiency.
pub(crate) struct Channel<T> {
/// The head of the channel.
head: CachePadded<Position<T>>,
/// The tail of the channel.
tail: CachePadded<Position<T>>,
/// Receivers waiting while the channel is empty and not disconnected.
receivers: SyncWaker,
/// Indicates that dropping a `Channel<T>` may drop messages of type `T`.
_marker: PhantomData<T>,
}
impl<T> Channel<T> {
/// Creates a new unbounded channel.
pub(crate) fn new() -> Self {
Channel {
head: CachePadded::new(Position {
block: AtomicPtr::new(ptr::null_mut()),
index: AtomicUsize::new(0),
}),
tail: CachePadded::new(Position {
block: AtomicPtr::new(ptr::null_mut()),
index: AtomicUsize::new(0),
}),
receivers: SyncWaker::new(),
_marker: PhantomData,
}
}
/// Returns a receiver handle to the channel.
pub(crate) fn receiver(&self) -> Receiver<'_, T> {
Receiver(self)
}
/// Returns a sender handle to the channel.
pub(crate) fn sender(&self) -> Sender<'_, T> {
Sender(self)
}
/// Attempts to reserve a slot for sending a message.
fn start_send(&self, token: &mut Token) -> bool {
let backoff = Backoff::new();
let mut tail = self.tail.index.load(Ordering::Acquire);
let mut block = self.tail.block.load(Ordering::Acquire);
let mut next_block = None;
loop {
// Check if the channel is disconnected.
if tail & MARK_BIT != 0 {
token.list.block = ptr::null();
return true;
}
// Calculate the offset of the index into the block.
let offset = (tail >> SHIFT) % LAP;
// If we reached the end of the block, wait until the next one is installed.
if offset == BLOCK_CAP {
backoff.snooze();
tail = self.tail.index.load(Ordering::Acquire);
block = self.tail.block.load(Ordering::Acquire);
continue;
}
// If we're going to have to install the next block, allocate it in advance in order to
// make the wait for other threads as short as possible.
if offset + 1 == BLOCK_CAP && next_block.is_none() {
next_block = Some(Box::new(Block::<T>::new()));
}
// If this is the first message to be sent into the channel, we need to allocate the
// first block and install it.
if block.is_null() {
let new = Box::into_raw(Box::new(Block::<T>::new()));
if self
.tail
.block
.compare_exchange(block, new, Ordering::Release, Ordering::Relaxed)
.is_ok()
{
self.head.block.store(new, Ordering::Release);
block = new;
} else {
next_block = unsafe { Some(Box::from_raw(new)) };
tail = self.tail.index.load(Ordering::Acquire);
block = self.tail.block.load(Ordering::Acquire);
continue;
}
}
let new_tail = tail + (1 << SHIFT);
// Try advancing the tail forward.
match self.tail.index.compare_exchange_weak(
tail,
new_tail,
Ordering::SeqCst,
Ordering::Acquire,
) {
Ok(_) => unsafe {
// If we've reached the end of the block, install the next one.
if offset + 1 == BLOCK_CAP {
let next_block = Box::into_raw(next_block.unwrap());
self.tail.block.store(next_block, Ordering::Release);
self.tail.index.fetch_add(1 << SHIFT, Ordering::Release);
(*block).next.store(next_block, Ordering::Release);
}
token.list.block = block as *const u8;
token.list.offset = offset;
return true;
},
Err(t) => {
tail = t;
block = self.tail.block.load(Ordering::Acquire);
backoff.spin();
}
}
}
}
/// Writes a message into the channel.
pub(crate) unsafe fn write(&self, token: &mut Token, msg: T) -> Result<(), T> {
// If there is no slot, the channel is disconnected.
if token.list.block.is_null() {
return Err(msg);
}
// Write the message into the slot.
let block = token.list.block.cast::<Block<T>>();
let offset = token.list.offset;
let slot = (*block).slots.get_unchecked(offset);
slot.msg.get().write(MaybeUninit::new(msg));
slot.state.fetch_or(WRITE, Ordering::Release);
// Wake a sleeping receiver.
self.receivers.notify();
Ok(())
}
/// Attempts to reserve a slot for receiving a message.
fn start_recv(&self, token: &mut Token) -> bool {
let backoff = Backoff::new();
let mut head = self.head.index.load(Ordering::Acquire);
let mut block = self.head.block.load(Ordering::Acquire);
loop {
// Calculate the offset of the index into the block.
let offset = (head >> SHIFT) % LAP;
// If we reached the end of the block, wait until the next one is installed.
if offset == BLOCK_CAP {
backoff.snooze();
head = self.head.index.load(Ordering::Acquire);
block = self.head.block.load(Ordering::Acquire);
continue;
}
let mut new_head = head + (1 << SHIFT);
if new_head & MARK_BIT == 0 {
atomic::fence(Ordering::SeqCst);
let tail = self.tail.index.load(Ordering::Relaxed);
// If the tail equals the head, that means the channel is empty.
if head >> SHIFT == tail >> SHIFT {
// If the channel is disconnected...
if tail & MARK_BIT != 0 {
// ...then receive an error.
token.list.block = ptr::null();
return true;
} else {
// Otherwise, the receive operation is not ready.
return false;
}
}
// If head and tail are not in the same block, set `MARK_BIT` in head.
if (head >> SHIFT) / LAP != (tail >> SHIFT) / LAP {
new_head |= MARK_BIT;
}
}
// The block can be null here only if the first message is being sent into the channel.
// In that case, just wait until it gets initialized.
if block.is_null() {
backoff.snooze();
head = self.head.index.load(Ordering::Acquire);
block = self.head.block.load(Ordering::Acquire);
continue;
}
// Try moving the head index forward.
match self.head.index.compare_exchange_weak(
head,
new_head,
Ordering::SeqCst,
Ordering::Acquire,
) {
Ok(_) => unsafe {
// If we've reached the end of the block, move to the next one.
if offset + 1 == BLOCK_CAP {
let next = (*block).wait_next();
let mut next_index = (new_head & !MARK_BIT).wrapping_add(1 << SHIFT);
if !(*next).next.load(Ordering::Relaxed).is_null() {
next_index |= MARK_BIT;
}
self.head.block.store(next, Ordering::Release);
self.head.index.store(next_index, Ordering::Release);
}
token.list.block = block as *const u8;
token.list.offset = offset;
return true;
},
Err(h) => {
head = h;
block = self.head.block.load(Ordering::Acquire);
backoff.spin();
}
}
}
}
/// Reads a message from the channel.
pub(crate) unsafe fn read(&self, token: &mut Token) -> Result<T, ()> {
if token.list.block.is_null() {
// The channel is disconnected.
return Err(());
}
// Read the message.
let block = token.list.block as *mut Block<T>;
let offset = token.list.offset;
let slot = (*block).slots.get_unchecked(offset);
slot.wait_write();
let msg = slot.msg.get().read().assume_init();
// Destroy the block if we've reached the end, or if another thread wanted to destroy but
// couldn't because we were busy reading from the slot.
if offset + 1 == BLOCK_CAP {
Block::destroy(block, 0);
} else if slot.state.fetch_or(READ, Ordering::AcqRel) & DESTROY != 0 {
Block::destroy(block, offset + 1);
}
Ok(msg)
}
/// Attempts to send a message into the channel.
pub(crate) fn try_send(&self, msg: T) -> Result<(), TrySendError<T>> {
self.send(msg, None).map_err(|err| match err {
SendTimeoutError::Disconnected(msg) => TrySendError::Disconnected(msg),
SendTimeoutError::Timeout(_) => unreachable!(),
})
}
/// Sends a message into the channel.
pub(crate) fn send(
&self,
msg: T,
_deadline: Option<Instant>,
) -> Result<(), SendTimeoutError<T>> {
let token = &mut Token::default();
assert!(self.start_send(token));
unsafe {
self.write(token, msg)
.map_err(SendTimeoutError::Disconnected)
}
}
/// Attempts to receive a message without blocking.
pub(crate) fn try_recv(&self) -> Result<T, TryRecvError> {
let token = &mut Token::default();
if self.start_recv(token) {
unsafe { self.read(token).map_err(|_| TryRecvError::Disconnected) }
} else {
Err(TryRecvError::Empty)
}
}
/// Receives a message from the channel.
pub(crate) fn recv(&self, deadline: Option<Instant>) -> Result<T, RecvTimeoutError> {
let token = &mut Token::default();
loop {
// Try receiving a message several times.
let backoff = Backoff::new();
loop {
if self.start_recv(token) {
unsafe {
return self.read(token).map_err(|_| RecvTimeoutError::Disconnected);
}
}
if backoff.is_completed() {
break;
} else {
backoff.snooze();
}
}
if let Some(d) = deadline {
if Instant::now() >= d {
return Err(RecvTimeoutError::Timeout);
}
}
// Prepare for blocking until a sender wakes us up.
Context::with(|cx| {
let oper = Operation::hook(token);
self.receivers.register(oper, cx);
// Has the channel become ready just now?
if !self.is_empty() || self.is_disconnected() {
let _ = cx.try_select(Selected::Aborted);
}
// Block the current thread.
let sel = cx.wait_until(deadline);
match sel {
Selected::Waiting => unreachable!(),
Selected::Aborted | Selected::Disconnected => {
self.receivers.unregister(oper).unwrap();
// If the channel was disconnected, we still have to check for remaining
// messages.
}
Selected::Operation(_) => {}
}
});
}
}
/// Returns the current number of messages inside the channel.
pub(crate) fn len(&self) -> usize {
loop {
// Load the tail index, then load the head index.
let mut tail = self.tail.index.load(Ordering::SeqCst);
let mut head = self.head.index.load(Ordering::SeqCst);
// If the tail index didn't change, we've got consistent indices to work with.
if self.tail.index.load(Ordering::SeqCst) == tail {
// Erase the lower bits.
tail &= !((1 << SHIFT) - 1);
head &= !((1 << SHIFT) - 1);
// Fix up indices if they fall onto block ends.
if (tail >> SHIFT) & (LAP - 1) == LAP - 1 {
tail = tail.wrapping_add(1 << SHIFT);
}
if (head >> SHIFT) & (LAP - 1) == LAP - 1 {
head = head.wrapping_add(1 << SHIFT);
}
// Rotate indices so that head falls into the first block.
let lap = (head >> SHIFT) / LAP;
tail = tail.wrapping_sub((lap * LAP) << SHIFT);
head = head.wrapping_sub((lap * LAP) << SHIFT);
// Remove the lower bits.
tail >>= SHIFT;
head >>= SHIFT;
// Return the difference minus the number of blocks between tail and head.
return tail - head - tail / LAP;
}
}
}
/// Returns the capacity of the channel.
pub(crate) fn capacity(&self) -> Option<usize> {
None
}
/// Disconnects senders and wakes up all blocked receivers.
///
/// Returns `true` if this call disconnected the channel.
pub(crate) fn disconnect_senders(&self) -> bool {
let tail = self.tail.index.fetch_or(MARK_BIT, Ordering::SeqCst);
if tail & MARK_BIT == 0 {
self.receivers.disconnect();
true
} else {
false
}
}
/// Disconnects receivers.
///
/// Returns `true` if this call disconnected the channel.
pub(crate) fn disconnect_receivers(&self) -> bool {
let tail = self.tail.index.fetch_or(MARK_BIT, Ordering::SeqCst);
if tail & MARK_BIT == 0 {
// If receivers are dropped first, discard all messages to free
// memory eagerly.
self.discard_all_messages();
true
} else {
false
}
}
/// Discards all messages.
///
/// This method should only be called when all receivers are dropped.
fn discard_all_messages(&self) {
let backoff = Backoff::new();
let mut tail = self.tail.index.load(Ordering::Acquire);
loop {
let offset = (tail >> SHIFT) % LAP;
if offset != BLOCK_CAP {
break;
}
// New updates to tail will be rejected by MARK_BIT and aborted unless it's
// at boundary. We need to wait for the updates take affect otherwise there
// can be memory leaks.
backoff.snooze();
tail = self.tail.index.load(Ordering::Acquire);
}
let mut head = self.head.index.load(Ordering::Acquire);
// The channel may be uninitialized, so we have to swap to avoid overwriting any sender's attempts
// to initialize the first block before noticing that the receivers disconnected. Late allocations
// will be deallocated by the sender in Drop
let mut block = self.head.block.swap(ptr::null_mut(), Ordering::AcqRel);
// If we're going to be dropping messages we need to synchronize with initialization
if head >> SHIFT != tail >> SHIFT {
// The block can be null here only if a sender is in the process of initializing the
// channel while another sender managed to send a message by inserting it into the
// semi-initialized channel and advanced the tail.
// In that case, just wait until it gets initialized.
while block.is_null() {
backoff.snooze();
block = self.head.block.load(Ordering::Acquire);
}
}
unsafe {
// Drop all messages between head and tail and deallocate the heap-allocated blocks.
while head >> SHIFT != tail >> SHIFT {
let offset = (head >> SHIFT) % LAP;
if offset < BLOCK_CAP {
// Drop the message in the slot.
let slot = (*block).slots.get_unchecked(offset);
slot.wait_write();
(*slot.msg.get()).assume_init_drop();
} else {
(*block).wait_next();
// Deallocate the block and move to the next one.
let next = (*block).next.load(Ordering::Acquire);
drop(Box::from_raw(block));
block = next;
}
head = head.wrapping_add(1 << SHIFT);
}
// Deallocate the last remaining block.
if !block.is_null() {
drop(Box::from_raw(block));
}
}
head &= !MARK_BIT;
self.head.index.store(head, Ordering::Release);
}
/// Returns `true` if the channel is disconnected.
pub(crate) fn is_disconnected(&self) -> bool {
self.tail.index.load(Ordering::SeqCst) & MARK_BIT != 0
}
/// Returns `true` if the channel is empty.
pub(crate) fn is_empty(&self) -> bool {
let head = self.head.index.load(Ordering::SeqCst);
let tail = self.tail.index.load(Ordering::SeqCst);
head >> SHIFT == tail >> SHIFT
}
/// Returns `true` if the channel is full.
pub(crate) fn is_full(&self) -> bool {
false
}
}
impl<T> Drop for Channel<T> {
fn drop(&mut self) {
let mut head = *self.head.index.get_mut();
let mut tail = *self.tail.index.get_mut();
let mut block = *self.head.block.get_mut();
// Erase the lower bits.
head &= !((1 << SHIFT) - 1);
tail &= !((1 << SHIFT) - 1);
unsafe {
// Drop all messages between head and tail and deallocate the heap-allocated blocks.
while head != tail {
let offset = (head >> SHIFT) % LAP;
if offset < BLOCK_CAP {
// Drop the message in the slot.
let slot = (*block).slots.get_unchecked(offset);
(*slot.msg.get()).assume_init_drop();
} else {
// Deallocate the block and move to the next one.
let next = *(*block).next.get_mut();
drop(Box::from_raw(block));
block = next;
}
head = head.wrapping_add(1 << SHIFT);
}
// Deallocate the last remaining block.
if !block.is_null() {
drop(Box::from_raw(block));
}
}
}
}
/// Receiver handle to a channel.
pub(crate) struct Receiver<'a, T>(&'a Channel<T>);
/// Sender handle to a channel.
pub(crate) struct Sender<'a, T>(&'a Channel<T>);
impl<T> SelectHandle for Receiver<'_, T> {
fn try_select(&self, token: &mut Token) -> bool {
self.0.start_recv(token)
}
fn deadline(&self) -> Option<Instant> {
None
}
fn register(&self, oper: Operation, cx: &Context) -> bool {
self.0.receivers.register(oper, cx);
self.is_ready()
}
fn unregister(&self, oper: Operation) {
self.0.receivers.unregister(oper);
}
fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
self.try_select(token)
}
fn is_ready(&self) -> bool {
!self.0.is_empty() || self.0.is_disconnected()
}
fn watch(&self, oper: Operation, cx: &Context) -> bool {
self.0.receivers.watch(oper, cx);
self.is_ready()
}
fn unwatch(&self, oper: Operation) {
self.0.receivers.unwatch(oper);
}
}
impl<T> SelectHandle for Sender<'_, T> {
fn try_select(&self, token: &mut Token) -> bool {
self.0.start_send(token)
}
fn deadline(&self) -> Option<Instant> {
None
}
fn register(&self, _oper: Operation, _cx: &Context) -> bool {
self.is_ready()
}
fn unregister(&self, _oper: Operation) {}
fn accept(&self, token: &mut Token, _cx: &Context) -> bool {
self.try_select(token)
}
fn is_ready(&self) -> bool {
true
}
fn watch(&self, _oper: Operation, _cx: &Context) -> bool {
self.is_ready()
}
fn unwatch(&self, _oper: Operation) {}
}