Revision control
Copy as Markdown
Other Tools
use alloc::{sync::Arc, vec, vec::Vec};
use crate::{packed::pattern::Patterns, util::search::Match, PatternID};
/// The type of the rolling hash used in the Rabin-Karp algorithm.
type Hash = usize;
/// The number of buckets to store our patterns in. We don't want this to be
/// too big in order to avoid wasting memory, but we don't want it to be too
/// small either to avoid spending too much time confirming literals.
///
/// The number of buckets MUST be a power of two. Otherwise, determining the
/// bucket from a hash will slow down the code considerably. Using a power
/// of two means `hash % NUM_BUCKETS` can compile down to a simple `and`
/// instruction.
const NUM_BUCKETS: usize = 64;
/// An implementation of the Rabin-Karp algorithm. The main idea of this
/// algorithm is to maintain a rolling hash as it moves through the input, and
/// then check whether that hash corresponds to the same hash for any of the
/// patterns we're looking for.
///
/// A draw back of naively scaling Rabin-Karp to multiple patterns is that
/// it requires all of the patterns to be the same length, which in turn
/// corresponds to the number of bytes to hash. We adapt this to work for
/// multiple patterns of varying size by fixing the number of bytes to hash
/// to be the length of the smallest pattern. We also split the patterns into
/// several buckets to hopefully make the confirmation step faster.
///
/// Wikipedia has a decent explanation, if a bit heavy on the theory:
///
/// But ESMAJ provides something a bit more concrete:
#[derive(Clone, Debug)]
pub(crate) struct RabinKarp {
/// The patterns we're searching for.
patterns: Arc<Patterns>,
/// The order of patterns in each bucket is significant. Namely, they are
/// arranged such that the first one to match is the correct match. This
/// may not necessarily correspond to the order provided by the caller.
/// For example, if leftmost-longest semantics are used, then the patterns
/// are sorted by their length in descending order. If leftmost-first
/// semantics are used, then the patterns are sorted by their pattern ID
/// in ascending order (which corresponds to the caller's order).
buckets: Vec<Vec<(Hash, PatternID)>>,
/// The length of the hashing window. Generally, this corresponds to the
/// length of the smallest pattern.
hash_len: usize,
/// The factor to subtract out of a hash before updating it with a new
/// byte.
hash_2pow: usize,
}
impl RabinKarp {
/// Compile a new Rabin-Karp matcher from the patterns given.
///
/// This panics if any of the patterns in the collection are empty, or if
/// the collection is itself empty.
pub(crate) fn new(patterns: &Arc<Patterns>) -> RabinKarp {
assert!(patterns.len() >= 1);
let hash_len = patterns.minimum_len();
assert!(hash_len >= 1);
let mut hash_2pow = 1usize;
for _ in 1..hash_len {
hash_2pow = hash_2pow.wrapping_shl(1);
}
let mut rk = RabinKarp {
patterns: Arc::clone(patterns),
buckets: vec![vec![]; NUM_BUCKETS],
hash_len,
hash_2pow,
};
for (id, pat) in patterns.iter() {
let hash = rk.hash(&pat.bytes()[..rk.hash_len]);
let bucket = hash % NUM_BUCKETS;
rk.buckets[bucket].push((hash, id));
}
rk
}
/// Return the first matching pattern in the given haystack, begining the
/// search at `at`.
pub(crate) fn find_at(
&self,
haystack: &[u8],
mut at: usize,
) -> Option<Match> {
assert_eq!(NUM_BUCKETS, self.buckets.len());
if at + self.hash_len > haystack.len() {
return None;
}
let mut hash = self.hash(&haystack[at..at + self.hash_len]);
loop {
let bucket = &self.buckets[hash % NUM_BUCKETS];
for &(phash, pid) in bucket {
if phash == hash {
if let Some(c) = self.verify(pid, haystack, at) {
return Some(c);
}
}
}
if at + self.hash_len >= haystack.len() {
return None;
}
hash = self.update_hash(
hash,
haystack[at],
haystack[at + self.hash_len],
);
at += 1;
}
}
/// Returns the approximate total amount of heap used by this searcher, in
/// units of bytes.
pub(crate) fn memory_usage(&self) -> usize {
self.buckets.len() * core::mem::size_of::<Vec<(Hash, PatternID)>>()
+ self.patterns.len() * core::mem::size_of::<(Hash, PatternID)>()
}
/// Verify whether the pattern with the given id matches at
/// `haystack[at..]`.
///
/// We tag this function as `cold` because it helps improve codegen.
/// Intuitively, it would seem like inlining it would be better. However,
/// the only time this is called and a match is not found is when there
/// there is a hash collision, or when a prefix of a pattern matches but
/// the entire pattern doesn't match. This is hopefully fairly rare, and
/// if it does occur a lot, it's going to be slow no matter what we do.
#[cold]
fn verify(
&self,
id: PatternID,
haystack: &[u8],
at: usize,
) -> Option<Match> {
let pat = self.patterns.get(id);
if pat.is_prefix(&haystack[at..]) {
Some(Match::new(id, at..at + pat.len()))
} else {
None
}
}
/// Hash the given bytes.
fn hash(&self, bytes: &[u8]) -> Hash {
assert_eq!(self.hash_len, bytes.len());
let mut hash = 0usize;
for &b in bytes {
hash = hash.wrapping_shl(1).wrapping_add(b as usize);
}
hash
}
/// Update the hash given based on removing `old_byte` at the beginning
/// of some byte string, and appending `new_byte` to the end of that same
/// byte string.
fn update_hash(&self, prev: Hash, old_byte: u8, new_byte: u8) -> Hash {
prev.wrapping_sub((old_byte as usize).wrapping_mul(self.hash_2pow))
.wrapping_shl(1)
.wrapping_add(new_byte as usize)
}
}