Revision control

Copy as Markdown

Other Tools

/* SSSE3 vector permutation AES for Libgcrypt
* Copyright (C) 2014-2017 Jussi Kivilinna <jussi.kivilinna@iki.fi>
*
* This file is part of Libgcrypt.
*
* Libgcrypt is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as
* published by the Free Software Foundation; either version 2.1 of
* the License, or (at your option) any later version.
*
* Libgcrypt is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this program; if not, see <http://www.gnu.org/licenses/>.
*
*
* The code is based on the public domain library libvpaes version 0.5
* available at http://crypto.stanford.edu/vpaes/ and which carries
* this notice:
*
* libvpaes: constant-time SSSE3 AES encryption and decryption.
* version 0.5
*
* By Mike Hamburg, Stanford University, 2009. Public domain.
* I wrote essentially all of this code. I did not write the test
* vectors; they are the NIST known answer tests. I hereby release all
* the code and documentation here that I wrote into the public domain.
*
* This is an implementation of AES following my paper,
* "Accelerating AES with Vector Permute Instructions
*/
#if defined(__x86_64__)
#include <config.h>
#if defined(HAVE_GCC_INLINE_ASM_SSSE3) && \
(defined(HAVE_COMPATIBLE_GCC_AMD64_PLATFORM_AS) || \
defined(HAVE_COMPATIBLE_GCC_WIN64_PLATFORM_AS))
#include "asm-common-amd64.h"
.text
##
## _gcry_aes_ssse3_enc_preload
##
ELF(.type _gcry_aes_ssse3_enc_preload,@function)
.globl _gcry_aes_ssse3_enc_preload
_gcry_aes_ssse3_enc_preload:
CFI_STARTPROC();
ENTER_SYSV_FUNC_PARAMS_0_4
lea .Laes_consts(%rip), %rax
movdqa (%rax), %xmm9 # 0F
movdqa .Lk_inv (%rax), %xmm10 # inv
movdqa .Lk_inv+16(%rax), %xmm11 # inva
movdqa .Lk_sb1 (%rax), %xmm13 # sb1u
movdqa .Lk_sb1+16(%rax), %xmm12 # sb1t
movdqa .Lk_sb2 (%rax), %xmm15 # sb2u
movdqa .Lk_sb2+16(%rax), %xmm14 # sb2t
EXIT_SYSV_FUNC
ret
CFI_ENDPROC();
ELF(.size _gcry_aes_ssse3_enc_preload,.-_gcry_aes_ssse3_enc_preload)
##
## _gcry_aes_ssse3_dec_preload
##
ELF(.type _gcry_aes_ssse3_dec_preload,@function)
.globl _gcry_aes_ssse3_dec_preload
_gcry_aes_ssse3_dec_preload:
CFI_STARTPROC();
ENTER_SYSV_FUNC_PARAMS_0_4
lea .Laes_consts(%rip), %rax
movdqa (%rax), %xmm9 # 0F
movdqa .Lk_inv (%rax), %xmm10 # inv
movdqa .Lk_inv+16(%rax), %xmm11 # inva
movdqa .Lk_dsb9 (%rax), %xmm13 # sb9u
movdqa .Lk_dsb9+16(%rax), %xmm12 # sb9t
movdqa .Lk_dsbd (%rax), %xmm15 # sbdu
movdqa .Lk_dsbb (%rax), %xmm14 # sbbu
movdqa .Lk_dsbe (%rax), %xmm8 # sbeu
EXIT_SYSV_FUNC
ret
CFI_ENDPROC();
ELF(.size _gcry_aes_ssse3_dec_preload,.-_gcry_aes_ssse3_dec_preload)
##
## Constant-time SSSE3 AES core implementation.
##
## By Mike Hamburg (Stanford University), 2009
## Public domain.
##
##
## _aes_encrypt_core
##
## AES-encrypt %xmm0.
##
## Inputs:
## %xmm0 = input
## %xmm9-%xmm15 as in .Laes_preheat
## (%rdi) = scheduled keys
## %rsi = nrounds
##
## Output in %xmm0
## Clobbers %xmm1-%xmm4, %r9, %r11, %rax, %rcx, %rdx
## Preserves %xmm6 - %xmm7 so you get some local vectors
##
##
.align 16
ELF(.type _gcry_aes_ssse3_encrypt_core,@function)
.globl _gcry_aes_ssse3_encrypt_core
_gcry_aes_ssse3_encrypt_core:
_aes_encrypt_core:
CFI_STARTPROC();
ENTER_SYSV_FUNC_PARAMS_0_4
mov %rdi, %rdx
leaq -1(%rsi), %rax
lea .Laes_consts(%rip), %rcx
leaq .Lk_mc_backward(%rcx), %rdi
mov $16, %rsi
movdqa .Lk_ipt (%rcx), %xmm2 # iptlo
movdqa %xmm9, %xmm1
pandn %xmm0, %xmm1
psrld $4, %xmm1
pand %xmm9, %xmm0
pshufb %xmm0, %xmm2
movdqa .Lk_ipt+16(%rcx), %xmm0 # ipthi
pshufb %xmm1, %xmm0
pxor (%rdx),%xmm2
pxor %xmm2, %xmm0
add $16, %rdx
jmp .Laes_entry
.align 8
.Laes_loop:
# middle of middle round
movdqa %xmm13, %xmm4 # 4 : sb1u
pshufb %xmm2, %xmm4 # 4 = sb1u
pxor (%rdx), %xmm4 # 4 = sb1u + k
movdqa %xmm12, %xmm0 # 0 : sb1t
pshufb %xmm3, %xmm0 # 0 = sb1t
pxor %xmm4, %xmm0 # 0 = A
movdqa %xmm15, %xmm4 # 4 : sb2u
pshufb %xmm2, %xmm4 # 4 = sb2u
movdqa .Lk_mc_forward-.Lk_mc_backward(%rsi,%rdi), %xmm1
movdqa %xmm14, %xmm2 # 2 : sb2t
pshufb %xmm3, %xmm2 # 2 = sb2t
pxor %xmm4, %xmm2 # 2 = 2A
movdqa %xmm0, %xmm3 # 3 = A
pshufb %xmm1, %xmm0 # 0 = B
pxor %xmm2, %xmm0 # 0 = 2A+B
pshufb (%rsi,%rdi), %xmm3 # 3 = D
lea 16(%esi),%esi # next mc
pxor %xmm0, %xmm3 # 3 = 2A+B+D
lea 16(%rdx),%rdx # next key
pshufb %xmm1, %xmm0 # 0 = 2B+C
pxor %xmm3, %xmm0 # 0 = 2A+3B+C+D
and $48, %rsi # ... mod 4
dec %rax # nr--
.Laes_entry:
# top of round
movdqa %xmm9, %xmm1 # 1 : i
pandn %xmm0, %xmm1 # 1 = i<<4
psrld $4, %xmm1 # 1 = i
pand %xmm9, %xmm0 # 0 = k
movdqa %xmm11, %xmm2 # 2 : a/k
pshufb %xmm0, %xmm2 # 2 = a/k
pxor %xmm1, %xmm0 # 0 = j
movdqa %xmm10, %xmm3 # 3 : 1/i
pshufb %xmm1, %xmm3 # 3 = 1/i
pxor %xmm2, %xmm3 # 3 = iak = 1/i + a/k
movdqa %xmm10, %xmm4 # 4 : 1/j
pshufb %xmm0, %xmm4 # 4 = 1/j
pxor %xmm2, %xmm4 # 4 = jak = 1/j + a/k
movdqa %xmm10, %xmm2 # 2 : 1/iak
pshufb %xmm3, %xmm2 # 2 = 1/iak
pxor %xmm0, %xmm2 # 2 = io
movdqa %xmm10, %xmm3 # 3 : 1/jak
pshufb %xmm4, %xmm3 # 3 = 1/jak
pxor %xmm1, %xmm3 # 3 = jo
jnz .Laes_loop
# middle of last round
movdqa .Lk_sbo(%rcx), %xmm4 # 3 : sbou
pshufb %xmm2, %xmm4 # 4 = sbou
pxor (%rdx), %xmm4 # 4 = sb1u + k
movdqa .Lk_sbo+16(%rcx), %xmm0 # 0 : sbot
pshufb %xmm3, %xmm0 # 0 = sb1t
pxor %xmm4, %xmm0 # 0 = A
pshufb .Lk_sr(%rsi,%rcx), %xmm0
EXIT_SYSV_FUNC
ret
CFI_ENDPROC();
ELF(.size _aes_encrypt_core,.-_aes_encrypt_core)
##
## Decryption core
##
## Same API as encryption core.
##
.align 16
.globl _gcry_aes_ssse3_decrypt_core
ELF(.type _gcry_aes_ssse3_decrypt_core,@function)
_gcry_aes_ssse3_decrypt_core:
_aes_decrypt_core:
CFI_STARTPROC();
ENTER_SYSV_FUNC_PARAMS_0_4
mov %rdi, %rdx
lea .Laes_consts(%rip), %rcx
subl $1, %esi
movl %esi, %eax
shll $4, %esi
xorl $48, %esi
andl $48, %esi
movdqa .Lk_dipt (%rcx), %xmm2 # iptlo
movdqa %xmm9, %xmm1
pandn %xmm0, %xmm1
psrld $4, %xmm1
pand %xmm9, %xmm0
pshufb %xmm0, %xmm2
movdqa .Lk_dipt+16(%rcx), %xmm0 # ipthi
pshufb %xmm1, %xmm0
pxor (%rdx), %xmm2
pxor %xmm2, %xmm0
movdqa .Lk_mc_forward+48(%rcx), %xmm5
lea 16(%rdx), %rdx
neg %rax
jmp .Laes_dec_entry
.align 16
.Laes_dec_loop:
##
## Inverse mix columns
##
movdqa %xmm13, %xmm4 # 4 : sb9u
pshufb %xmm2, %xmm4 # 4 = sb9u
pxor (%rdx), %xmm4
movdqa %xmm12, %xmm0 # 0 : sb9t
pshufb %xmm3, %xmm0 # 0 = sb9t
movdqa .Lk_dsbd+16(%rcx),%xmm1 # 1 : sbdt
pxor %xmm4, %xmm0 # 0 = ch
lea 16(%rdx), %rdx # next round key
pshufb %xmm5, %xmm0 # MC ch
movdqa %xmm15, %xmm4 # 4 : sbdu
pshufb %xmm2, %xmm4 # 4 = sbdu
pxor %xmm0, %xmm4 # 4 = ch
pshufb %xmm3, %xmm1 # 1 = sbdt
pxor %xmm4, %xmm1 # 1 = ch
pshufb %xmm5, %xmm1 # MC ch
movdqa %xmm14, %xmm4 # 4 : sbbu
pshufb %xmm2, %xmm4 # 4 = sbbu
inc %rax # nr--
pxor %xmm1, %xmm4 # 4 = ch
movdqa .Lk_dsbb+16(%rcx),%xmm0 # 0 : sbbt
pshufb %xmm3, %xmm0 # 0 = sbbt
pxor %xmm4, %xmm0 # 0 = ch
pshufb %xmm5, %xmm0 # MC ch
movdqa %xmm8, %xmm4 # 4 : sbeu
pshufb %xmm2, %xmm4 # 4 = sbeu
pshufd $0x93, %xmm5, %xmm5
pxor %xmm0, %xmm4 # 4 = ch
movdqa .Lk_dsbe+16(%rcx),%xmm0 # 0 : sbet
pshufb %xmm3, %xmm0 # 0 = sbet
pxor %xmm4, %xmm0 # 0 = ch
.Laes_dec_entry:
# top of round
movdqa %xmm9, %xmm1 # 1 : i
pandn %xmm0, %xmm1 # 1 = i<<4
psrld $4, %xmm1 # 1 = i
pand %xmm9, %xmm0 # 0 = k
movdqa %xmm11, %xmm2 # 2 : a/k
pshufb %xmm0, %xmm2 # 2 = a/k
pxor %xmm1, %xmm0 # 0 = j
movdqa %xmm10, %xmm3 # 3 : 1/i
pshufb %xmm1, %xmm3 # 3 = 1/i
pxor %xmm2, %xmm3 # 3 = iak = 1/i + a/k
movdqa %xmm10, %xmm4 # 4 : 1/j
pshufb %xmm0, %xmm4 # 4 = 1/j
pxor %xmm2, %xmm4 # 4 = jak = 1/j + a/k
movdqa %xmm10, %xmm2 # 2 : 1/iak
pshufb %xmm3, %xmm2 # 2 = 1/iak
pxor %xmm0, %xmm2 # 2 = io
movdqa %xmm10, %xmm3 # 3 : 1/jak
pshufb %xmm4, %xmm3 # 3 = 1/jak
pxor %xmm1, %xmm3 # 3 = jo
jnz .Laes_dec_loop
# middle of last round
movdqa .Lk_dsbo(%rcx), %xmm4 # 3 : sbou
pshufb %xmm2, %xmm4 # 4 = sbou
pxor (%rdx), %xmm4 # 4 = sb1u + k
movdqa .Lk_dsbo+16(%rcx), %xmm0 # 0 : sbot
pshufb %xmm3, %xmm0 # 0 = sb1t
pxor %xmm4, %xmm0 # 0 = A
pshufb .Lk_sr(%rsi,%rcx), %xmm0
EXIT_SYSV_FUNC
ret
CFI_ENDPROC();
ELF(.size _aes_decrypt_core,.-_aes_decrypt_core)
########################################################
## ##
## AES key schedule ##
## ##
########################################################
.align 16
.globl _gcry_aes_ssse3_schedule_core
ELF(.type _gcry_aes_ssse3_schedule_core,@function)
_gcry_aes_ssse3_schedule_core:
_aes_schedule_core:
# rdi = key
# rsi = size in bits
# rdx = buffer
# rcx = direction. 0=encrypt, 1=decrypt
# r8 = rotoffs
CFI_STARTPROC();
ENTER_SYSV_FUNC_PARAMS_5
# load the tables
lea .Laes_consts(%rip), %r10
movdqa (%r10), %xmm9 # 0F
movdqa .Lk_inv (%r10), %xmm10 # inv
movdqa .Lk_inv+16(%r10), %xmm11 # inva
movdqa .Lk_sb1 (%r10), %xmm13 # sb1u
movdqa .Lk_sb1+16(%r10), %xmm12 # sb1t
movdqa .Lk_sb2 (%r10), %xmm15 # sb2u
movdqa .Lk_sb2+16(%r10), %xmm14 # sb2t
movdqa .Lk_rcon(%r10), %xmm8 # load rcon
movdqu (%rdi), %xmm0 # load key (unaligned)
# input transform
movdqu %xmm0, %xmm3
lea .Lk_ipt(%r10), %r11
call .Laes_schedule_transform
movdqu %xmm0, %xmm7
test %rcx, %rcx
jnz .Laes_schedule_am_decrypting
# encrypting, output zeroth round key after transform
movdqa %xmm0, (%rdx)
jmp .Laes_schedule_go
.Laes_schedule_am_decrypting:
# decrypting, output zeroth round key after shiftrows
pshufb .Lk_sr(%r8,%r10),%xmm3
movdqa %xmm3, (%rdx)
xor $48, %r8
.Laes_schedule_go:
cmp $192, %rsi
je .Laes_schedule_192
cmp $256, %rsi
je .Laes_schedule_256
# 128: fall though
##
## .Laes_schedule_128
##
## 128-bit specific part of key schedule.
##
## This schedule is really simple, because all its parts
## are accomplished by the subroutines.
##
.Laes_schedule_128:
mov $10, %rsi
.Laes_schedule_128_L:
call .Laes_schedule_round
dec %rsi
jz .Laes_schedule_mangle_last
call .Laes_schedule_mangle # write output
jmp .Laes_schedule_128_L
##
## .Laes_schedule_192
##
## 192-bit specific part of key schedule.
##
## The main body of this schedule is the same as the 128-bit
## schedule, but with more smearing. The long, high side is
## stored in %xmm7 as before, and the short, low side is in
## the high bits of %xmm6.
##
## This schedule is somewhat nastier, however, because each
## round produces 192 bits of key material, or 1.5 round keys.
## Therefore, on each cycle we do 2 rounds and produce 3 round
## keys.
##
.Laes_schedule_192:
movdqu 8(%rdi),%xmm0 # load key part 2 (very unaligned)
call .Laes_schedule_transform # input transform
pshufd $0x0E, %xmm0, %xmm6
pslldq $8, %xmm6 # clobber low side with zeros
mov $4, %rsi
.Laes_schedule_192_L:
call .Laes_schedule_round
palignr $8,%xmm6,%xmm0
call .Laes_schedule_mangle # save key n
call .Laes_schedule_192_smear
call .Laes_schedule_mangle # save key n+1
call .Laes_schedule_round
dec %rsi
jz .Laes_schedule_mangle_last
call .Laes_schedule_mangle # save key n+2
call .Laes_schedule_192_smear
jmp .Laes_schedule_192_L
##
## .Laes_schedule_192_smear
##
## Smear the short, low side in the 192-bit key schedule.
##
## Inputs:
## %xmm7: high side, b a x y
## %xmm6: low side, d c 0 0
## %xmm13: 0
##
## Outputs:
## %xmm6: b+c+d b+c 0 0
## %xmm0: b+c+d b+c b a
##
.Laes_schedule_192_smear:
pshufd $0x80, %xmm6, %xmm0 # d c 0 0 -> c 0 0 0
pxor %xmm0, %xmm6 # -> c+d c 0 0
pshufd $0xFE, %xmm7, %xmm0 # b a _ _ -> b b b a
pxor %xmm6, %xmm0 # -> b+c+d b+c b a
pshufd $0x0E, %xmm0, %xmm6
pslldq $8, %xmm6 # clobber low side with zeros
ret
##
## .Laes_schedule_256
##
## 256-bit specific part of key schedule.
##
## The structure here is very similar to the 128-bit
## schedule, but with an additional 'low side' in
## %xmm6. The low side's rounds are the same as the
## high side's, except no rcon and no rotation.
##
.Laes_schedule_256:
movdqu 16(%rdi),%xmm0 # load key part 2 (unaligned)
call .Laes_schedule_transform # input transform
mov $7, %rsi
.Laes_schedule_256_L:
call .Laes_schedule_mangle # output low result
movdqa %xmm0, %xmm6 # save cur_lo in xmm6
# high round
call .Laes_schedule_round
dec %rsi
jz .Laes_schedule_mangle_last
call .Laes_schedule_mangle
# low round. swap xmm7 and xmm6
pshufd $0xFF, %xmm0, %xmm0
movdqa %xmm7, %xmm5
movdqa %xmm6, %xmm7
call .Laes_schedule_low_round
movdqa %xmm5, %xmm7
jmp .Laes_schedule_256_L
##
## .Laes_schedule_round
##
## Runs one main round of the key schedule on %xmm0, %xmm7
##
## Specifically, runs subbytes on the high dword of %xmm0
## then rotates it by one byte and xors into the low dword of
## %xmm7.
##
## Adds rcon from low byte of %xmm8, then rotates %xmm8 for
## next rcon.
##
## Smears the dwords of %xmm7 by xoring the low into the
## second low, result into third, result into highest.
##
## Returns results in %xmm7 = %xmm0.
## Clobbers %xmm1-%xmm4, %r11.
##
.Laes_schedule_round:
# extract rcon from xmm8
pxor %xmm1, %xmm1
palignr $15, %xmm8, %xmm1
palignr $15, %xmm8, %xmm8
pxor %xmm1, %xmm7
# rotate
pshufd $0xFF, %xmm0, %xmm0
palignr $1, %xmm0, %xmm0
# fall through...
# low round: same as high round, but no rotation and no rcon.
.Laes_schedule_low_round:
# smear xmm7
movdqa %xmm7, %xmm1
pslldq $4, %xmm7
pxor %xmm1, %xmm7
movdqa %xmm7, %xmm1
pslldq $8, %xmm7
pxor %xmm1, %xmm7
pxor .Lk_s63(%r10), %xmm7
# subbytes
movdqa %xmm9, %xmm1
pandn %xmm0, %xmm1
psrld $4, %xmm1 # 1 = i
pand %xmm9, %xmm0 # 0 = k
movdqa %xmm11, %xmm2 # 2 : a/k
pshufb %xmm0, %xmm2 # 2 = a/k
pxor %xmm1, %xmm0 # 0 = j
movdqa %xmm10, %xmm3 # 3 : 1/i
pshufb %xmm1, %xmm3 # 3 = 1/i
pxor %xmm2, %xmm3 # 3 = iak = 1/i + a/k
movdqa %xmm10, %xmm4 # 4 : 1/j
pshufb %xmm0, %xmm4 # 4 = 1/j
pxor %xmm2, %xmm4 # 4 = jak = 1/j + a/k
movdqa %xmm10, %xmm2 # 2 : 1/iak
pshufb %xmm3, %xmm2 # 2 = 1/iak
pxor %xmm0, %xmm2 # 2 = io
movdqa %xmm10, %xmm3 # 3 : 1/jak
pshufb %xmm4, %xmm3 # 3 = 1/jak
pxor %xmm1, %xmm3 # 3 = jo
movdqa .Lk_sb1(%r10), %xmm4 # 4 : sbou
pshufb %xmm2, %xmm4 # 4 = sbou
movdqa .Lk_sb1+16(%r10), %xmm0 # 0 : sbot
pshufb %xmm3, %xmm0 # 0 = sb1t
pxor %xmm4, %xmm0 # 0 = sbox output
# add in smeared stuff
pxor %xmm7, %xmm0
movdqa %xmm0, %xmm7
ret
##
## .Laes_schedule_transform
##
## Linear-transform %xmm0 according to tables at (%r11)
##
## Requires that %xmm9 = 0x0F0F... as in preheat
## Output in %xmm0
## Clobbers %xmm1, %xmm2
##
.Laes_schedule_transform:
movdqa %xmm9, %xmm1
pandn %xmm0, %xmm1
psrld $4, %xmm1
pand %xmm9, %xmm0
movdqa (%r11), %xmm2 # lo
pshufb %xmm0, %xmm2
movdqa 16(%r11), %xmm0 # hi
pshufb %xmm1, %xmm0
pxor %xmm2, %xmm0
ret
##
## .Laes_schedule_mangle
##
## Mangle xmm0 from (basis-transformed) standard version
## to our version.
##
## On encrypt,
## xor with 0x63
## multiply by circulant 0,1,1,1
## apply shiftrows transform
##
## On decrypt,
## xor with 0x63
## multiply by 'inverse mixcolumns' circulant E,B,D,9
## deskew
## apply shiftrows transform
##
##
## Writes out to (%rdx), and increments or decrements it
## Keeps track of round number mod 4 in %r8
## Preserves xmm0
## Clobbers xmm1-xmm5
##
.Laes_schedule_mangle:
movdqa %xmm0, %xmm4 # save xmm0 for later
movdqa .Lk_mc_forward(%r10),%xmm5
test %rcx, %rcx
jnz .Laes_schedule_mangle_dec
# encrypting
add $16, %rdx
pxor .Lk_s63(%r10),%xmm4
pshufb %xmm5, %xmm4
movdqa %xmm4, %xmm3
pshufb %xmm5, %xmm4
pxor %xmm4, %xmm3
pshufb %xmm5, %xmm4
pxor %xmm4, %xmm3
jmp .Laes_schedule_mangle_both
.Laes_schedule_mangle_dec:
lea .Lk_dks_1(%r10), %r11 # first table: *9
call .Laes_schedule_transform
movdqa %xmm0, %xmm3
pshufb %xmm5, %xmm3
add $32, %r11 # next table: *B
call .Laes_schedule_transform
pxor %xmm0, %xmm3
pshufb %xmm5, %xmm3
add $32, %r11 # next table: *D
call .Laes_schedule_transform
pxor %xmm0, %xmm3
pshufb %xmm5, %xmm3
add $32, %r11 # next table: *E
call .Laes_schedule_transform
pxor %xmm0, %xmm3
pshufb %xmm5, %xmm3
movdqa %xmm4, %xmm0 # restore %xmm0
add $-16, %rdx
.Laes_schedule_mangle_both:
pshufb .Lk_sr(%r8,%r10),%xmm3
add $-16, %r8
and $48, %r8
movdqa %xmm3, (%rdx)
ret
##
## .Laes_schedule_mangle_last
##
## Mangler for last round of key schedule
## Mangles %xmm0
## when encrypting, outputs out(%xmm0) ^ 63
## when decrypting, outputs unskew(%xmm0)
##
## Always called right before return... jumps to cleanup and exits
##
.Laes_schedule_mangle_last:
# schedule last round key from xmm0
lea .Lk_deskew(%r10),%r11 # prepare to deskew
test %rcx, %rcx
jnz .Laes_schedule_mangle_last_dec
# encrypting
pshufb .Lk_sr(%r8,%r10),%xmm0 # output permute
lea .Lk_opt(%r10), %r11 # prepare to output transform
add $32, %rdx
.Laes_schedule_mangle_last_dec:
add $-16, %rdx
pxor .Lk_s63(%r10), %xmm0
call .Laes_schedule_transform # output transform
movdqa %xmm0, (%rdx) # save last key
#_aes_cleanup
pxor %xmm0, %xmm0
pxor %xmm1, %xmm1
pxor %xmm2, %xmm2
pxor %xmm3, %xmm3
pxor %xmm4, %xmm4
pxor %xmm5, %xmm5
pxor %xmm6, %xmm6
pxor %xmm7, %xmm7
pxor %xmm8, %xmm8
EXIT_SYSV_FUNC
ret
CFI_ENDPROC();
ELF(.size _gcry_aes_ssse3_schedule_core,.-_gcry_aes_ssse3_schedule_core)
########################################################
## ##
## Constants ##
## ##
########################################################
.align 16
ELF(.type _aes_consts,@object)
.Laes_consts:
_aes_consts:
# s0F
.Lk_s0F = .-.Laes_consts
.quad 0x0F0F0F0F0F0F0F0F
.quad 0x0F0F0F0F0F0F0F0F
# input transform (lo, hi)
.Lk_ipt = .-.Laes_consts
.quad 0xC2B2E8985A2A7000
.quad 0xCABAE09052227808
.quad 0x4C01307D317C4D00
.quad 0xCD80B1FCB0FDCC81
# inv, inva
.Lk_inv = .-.Laes_consts
.quad 0x0E05060F0D080180
.quad 0x040703090A0B0C02
.quad 0x01040A060F0B0780
.quad 0x030D0E0C02050809
# sb1u, sb1t
.Lk_sb1 = .-.Laes_consts
.quad 0xB19BE18FCB503E00
.quad 0xA5DF7A6E142AF544
.quad 0x3618D415FAE22300
.quad 0x3BF7CCC10D2ED9EF
# sb2u, sb2t
.Lk_sb2 = .-.Laes_consts
.quad 0xE27A93C60B712400
.quad 0x5EB7E955BC982FCD
.quad 0x69EB88400AE12900
.quad 0xC2A163C8AB82234A
# sbou, sbot
.Lk_sbo = .-.Laes_consts
.quad 0xD0D26D176FBDC700
.quad 0x15AABF7AC502A878
.quad 0xCFE474A55FBB6A00
.quad 0x8E1E90D1412B35FA
# mc_forward
.Lk_mc_forward = .-.Laes_consts
.quad 0x0407060500030201
.quad 0x0C0F0E0D080B0A09
.quad 0x080B0A0904070605
.quad 0x000302010C0F0E0D
.quad 0x0C0F0E0D080B0A09
.quad 0x0407060500030201
.quad 0x000302010C0F0E0D
.quad 0x080B0A0904070605
# mc_backward
.Lk_mc_backward = .-.Laes_consts
.quad 0x0605040702010003
.quad 0x0E0D0C0F0A09080B
.quad 0x020100030E0D0C0F
.quad 0x0A09080B06050407
.quad 0x0E0D0C0F0A09080B
.quad 0x0605040702010003
.quad 0x0A09080B06050407
.quad 0x020100030E0D0C0F
# sr
.Lk_sr = .-.Laes_consts
.quad 0x0706050403020100
.quad 0x0F0E0D0C0B0A0908
.quad 0x030E09040F0A0500
.quad 0x0B06010C07020D08
.quad 0x0F060D040B020900
.quad 0x070E050C030A0108
.quad 0x0B0E0104070A0D00
.quad 0x0306090C0F020508
# rcon
.Lk_rcon = .-.Laes_consts
.quad 0x1F8391B9AF9DEEB6
.quad 0x702A98084D7C7D81
# s63: all equal to 0x63 transformed
.Lk_s63 = .-.Laes_consts
.quad 0x5B5B5B5B5B5B5B5B
.quad 0x5B5B5B5B5B5B5B5B
# output transform
.Lk_opt = .-.Laes_consts
.quad 0xFF9F4929D6B66000
.quad 0xF7974121DEBE6808
.quad 0x01EDBD5150BCEC00
.quad 0xE10D5DB1B05C0CE0
# deskew tables: inverts the sbox's 'skew'
.Lk_deskew = .-.Laes_consts
.quad 0x07E4A34047A4E300
.quad 0x1DFEB95A5DBEF91A
.quad 0x5F36B5DC83EA6900
.quad 0x2841C2ABF49D1E77
##
## Decryption stuff
## Key schedule constants
##
# decryption key schedule: x -> invskew x*9
.Lk_dks_1 = .-.Laes_consts
.quad 0xB6116FC87ED9A700
.quad 0x4AED933482255BFC
.quad 0x4576516227143300
.quad 0x8BB89FACE9DAFDCE
# decryption key schedule: invskew x*9 -> invskew x*D
.Lk_dks_2 = .-.Laes_consts
.quad 0x27438FEBCCA86400
.quad 0x4622EE8AADC90561
.quad 0x815C13CE4F92DD00
.quad 0x73AEE13CBD602FF2
# decryption key schedule: invskew x*D -> invskew x*B
.Lk_dks_3 = .-.Laes_consts
.quad 0x03C4C50201C6C700
.quad 0xF83F3EF9FA3D3CFB
.quad 0xEE1921D638CFF700
.quad 0xA5526A9D7384BC4B
# decryption key schedule: invskew x*B -> invskew x*E + 0x63
.Lk_dks_4 = .-.Laes_consts
.quad 0xE3C390B053732000
.quad 0xA080D3F310306343
.quad 0xA0CA214B036982E8
.quad 0x2F45AEC48CE60D67
##
## Decryption stuff
## Round function constants
##
# decryption input transform
.Lk_dipt = .-.Laes_consts
.quad 0x0F505B040B545F00
.quad 0x154A411E114E451A
.quad 0x86E383E660056500
.quad 0x12771772F491F194
# decryption sbox output *9*u, *9*t
.Lk_dsb9 = .-.Laes_consts
.quad 0x851C03539A86D600
.quad 0xCAD51F504F994CC9
.quad 0xC03B1789ECD74900
.quad 0x725E2C9EB2FBA565
# decryption sbox output *D*u, *D*t
.Lk_dsbd = .-.Laes_consts
.quad 0x7D57CCDFE6B1A200
.quad 0xF56E9B13882A4439
.quad 0x3CE2FAF724C6CB00
.quad 0x2931180D15DEEFD3
# decryption sbox output *B*u, *B*t
.Lk_dsbb = .-.Laes_consts
.quad 0xD022649296B44200
.quad 0x602646F6B0F2D404
.quad 0xC19498A6CD596700
.quad 0xF3FF0C3E3255AA6B
# decryption sbox output *E*u, *E*t
.Lk_dsbe = .-.Laes_consts
.quad 0x46F2929626D4D000
.quad 0x2242600464B4F6B0
.quad 0x0C55A6CDFFAAC100
.quad 0x9467F36B98593E32
# decryption sbox final output
.Lk_dsbo = .-.Laes_consts
.quad 0x1387EA537EF94000
.quad 0xC7AA6DB9D4943E2D
.quad 0x12D7560F93441D00
.quad 0xCA4B8159D8C58E9C
ELF(.size _aes_consts,.-_aes_consts)
#endif
#endif