Source code

Revision control

Copy as Markdown

Other Tools

/*
* X.509 Certificate Path Validation
* (C) 2010,2011,2012,2014,2016 Jack Lloyd
* (C) 2017 Fabian Weissberg, Rohde & Schwarz Cybersecurity
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/x509path.h>
#include <botan/x509_ext.h>
#include <botan/pk_keys.h>
#include <botan/ocsp.h>
#include <botan/oids.h>
#include <algorithm>
#include <chrono>
#include <vector>
#include <set>
#include <string>
#include <sstream>
#if defined(BOTAN_HAS_ONLINE_REVOCATION_CHECKS)
#include <future>
#include <botan/http_util.h>
#endif
namespace Botan {
/*
* PKIX path validation
*/
CertificatePathStatusCodes
PKIX::check_chain(const std::vector<std::shared_ptr<const X509_Certificate>>& cert_path,
std::chrono::system_clock::time_point ref_time,
const std::string& hostname,
Usage_Type usage,
size_t min_signature_algo_strength,
const std::set<std::string>& trusted_hashes)
{
if(cert_path.empty())
throw Invalid_Argument("PKIX::check_chain cert_path empty");
const bool self_signed_ee_cert = (cert_path.size() == 1);
X509_Time validation_time(ref_time);
CertificatePathStatusCodes cert_status(cert_path.size());
if(!hostname.empty() && !cert_path[0]->matches_dns_name(hostname))
cert_status[0].insert(Certificate_Status_Code::CERT_NAME_NOMATCH);
if(!cert_path[0]->allowed_usage(usage))
cert_status[0].insert(Certificate_Status_Code::INVALID_USAGE);
if(cert_path[0]->is_CA_cert() == false &&
cert_path[0]->has_constraints(KEY_CERT_SIGN))
{
/*
"If the keyCertSign bit is asserted, then the cA bit in the
basic constraints extension (Section 4.2.1.9) MUST also be
asserted." - RFC 5280
We don't bother doing this check on the rest of the path since they
must have the cA bit asserted or the validation will fail anyway.
*/
cert_status[0].insert(Certificate_Status_Code::INVALID_USAGE);
}
for(size_t i = 0; i != cert_path.size(); ++i)
{
std::set<Certificate_Status_Code>& status = cert_status.at(i);
const bool at_self_signed_root = (i == cert_path.size() - 1);
const std::shared_ptr<const X509_Certificate>& subject = cert_path[i];
const std::shared_ptr<const X509_Certificate>& issuer = cert_path[at_self_signed_root ? (i) : (i + 1)];
if(at_self_signed_root && (issuer->is_self_signed() == false))
{
status.insert(Certificate_Status_Code::CHAIN_LACKS_TRUST_ROOT);
}
if(subject->issuer_dn() != issuer->subject_dn())
{
status.insert(Certificate_Status_Code::CHAIN_NAME_MISMATCH);
}
// Check the serial number
if(subject->is_serial_negative())
{
status.insert(Certificate_Status_Code::CERT_SERIAL_NEGATIVE);
}
// Check the subject's DN components' length
for(const auto& dn_pair : subject->subject_dn().dn_info())
{
const size_t dn_ub = X509_DN::lookup_ub(dn_pair.first);
// dn_pair = <OID,str>
if(dn_ub > 0 && dn_pair.second.size() > dn_ub)
{
status.insert(Certificate_Status_Code::DN_TOO_LONG);
}
}
// Check all certs for valid time range
if(validation_time < subject->not_before())
status.insert(Certificate_Status_Code::CERT_NOT_YET_VALID);
if(validation_time > subject->not_after())
status.insert(Certificate_Status_Code::CERT_HAS_EXPIRED);
// Check issuer constraints
if(!issuer->is_CA_cert() && !self_signed_ee_cert)
status.insert(Certificate_Status_Code::CA_CERT_NOT_FOR_CERT_ISSUER);
std::unique_ptr<Public_Key> issuer_key(issuer->subject_public_key());
// Check the signature algorithm is known
if(OIDS::oid2str_or_empty(subject->signature_algorithm().get_oid()).empty())
{
status.insert(Certificate_Status_Code::SIGNATURE_ALGO_UNKNOWN);
}
else
{
// only perform the following checks if the signature algorithm is known
if(!issuer_key)
{
status.insert(Certificate_Status_Code::CERT_PUBKEY_INVALID);
}
else
{
const Certificate_Status_Code sig_status = subject->verify_signature(*issuer_key);
if(sig_status != Certificate_Status_Code::VERIFIED)
status.insert(sig_status);
if(issuer_key->estimated_strength() < min_signature_algo_strength)
status.insert(Certificate_Status_Code::SIGNATURE_METHOD_TOO_WEAK);
}
// Ignore untrusted hashes on self-signed roots
if(trusted_hashes.size() > 0 && !at_self_signed_root)
{
if(trusted_hashes.count(subject->hash_used_for_signature()) == 0)
status.insert(Certificate_Status_Code::UNTRUSTED_HASH);
}
}
// Check cert extensions
if(subject->x509_version() == 1)
{
if(subject->v2_issuer_key_id().empty() == false ||
subject->v2_subject_key_id().empty() == false)
{
status.insert(Certificate_Status_Code::V2_IDENTIFIERS_IN_V1_CERT);
}
}
Extensions extensions = subject->v3_extensions();
const auto& extensions_vec = extensions.extensions();
if(subject->x509_version() < 3 && !extensions_vec.empty())
{
status.insert(Certificate_Status_Code::EXT_IN_V1_V2_CERT);
}
for(auto& extension : extensions_vec)
{
extension.first->validate(*subject, *issuer, cert_path, cert_status, i);
}
if(extensions.extensions().size() != extensions.get_extension_oids().size())
{
status.insert(Certificate_Status_Code::DUPLICATE_CERT_EXTENSION);
}
}
// path len check
size_t max_path_length = cert_path.size();
for(size_t i = cert_path.size() - 1; i > 0 ; --i)
{
std::set<Certificate_Status_Code>& status = cert_status.at(i);
const std::shared_ptr<const X509_Certificate>& subject = cert_path[i];
/*
* If the certificate was not self-issued, verify that max_path_length is
* greater than zero and decrement max_path_length by 1.
*/
if(subject->subject_dn() != subject->issuer_dn())
{
if(max_path_length > 0)
{
--max_path_length;
}
else
{
status.insert(Certificate_Status_Code::CERT_CHAIN_TOO_LONG);
}
}
/*
* If pathLenConstraint is present in the certificate and is less than max_path_length,
* set max_path_length to the value of pathLenConstraint.
*/
if(subject->path_limit() != Cert_Extension::NO_CERT_PATH_LIMIT && subject->path_limit() < max_path_length)
{
max_path_length = subject->path_limit();
}
}
return cert_status;
}
CertificatePathStatusCodes
PKIX::check_ocsp(const std::vector<std::shared_ptr<const X509_Certificate>>& cert_path,
const std::vector<std::shared_ptr<const OCSP::Response>>& ocsp_responses,
const std::vector<Certificate_Store*>& trusted_certstores,
std::chrono::system_clock::time_point ref_time,
std::chrono::seconds max_ocsp_age)
{
if(cert_path.empty())
throw Invalid_Argument("PKIX::check_ocsp cert_path empty");
CertificatePathStatusCodes cert_status(cert_path.size() - 1);
for(size_t i = 0; i != cert_path.size() - 1; ++i)
{
std::set<Certificate_Status_Code>& status = cert_status.at(i);
std::shared_ptr<const X509_Certificate> subject = cert_path.at(i);
std::shared_ptr<const X509_Certificate> ca = cert_path.at(i+1);
if(i < ocsp_responses.size() && (ocsp_responses.at(i) != nullptr)
&& (ocsp_responses.at(i)->status() == OCSP::Response_Status_Code::Successful))
{
try
{
Certificate_Status_Code ocsp_signature_status = ocsp_responses.at(i)->check_signature(trusted_certstores, cert_path);
if(ocsp_signature_status == Certificate_Status_Code::OCSP_SIGNATURE_OK)
{
// Signature ok, so check the claimed status
Certificate_Status_Code ocsp_status = ocsp_responses.at(i)->status_for(*ca, *subject, ref_time, max_ocsp_age);
status.insert(ocsp_status);
}
else
{
// Some signature problem
status.insert(ocsp_signature_status);
}
}
catch(Exception&)
{
status.insert(Certificate_Status_Code::OCSP_RESPONSE_INVALID);
}
}
}
while(cert_status.size() > 0 && cert_status.back().empty())
cert_status.pop_back();
return cert_status;
}
CertificatePathStatusCodes
PKIX::check_crl(const std::vector<std::shared_ptr<const X509_Certificate>>& cert_path,
const std::vector<std::shared_ptr<const X509_CRL>>& crls,
std::chrono::system_clock::time_point ref_time)
{
if(cert_path.empty())
throw Invalid_Argument("PKIX::check_crl cert_path empty");
CertificatePathStatusCodes cert_status(cert_path.size());
const X509_Time validation_time(ref_time);
for(size_t i = 0; i != cert_path.size() - 1; ++i)
{
std::set<Certificate_Status_Code>& status = cert_status.at(i);
if(i < crls.size() && crls.at(i))
{
std::shared_ptr<const X509_Certificate> subject = cert_path.at(i);
std::shared_ptr<const X509_Certificate> ca = cert_path.at(i+1);
if(!ca->allowed_usage(CRL_SIGN))
status.insert(Certificate_Status_Code::CA_CERT_NOT_FOR_CRL_ISSUER);
if(validation_time < crls[i]->this_update())
status.insert(Certificate_Status_Code::CRL_NOT_YET_VALID);
if(validation_time > crls[i]->next_update())
status.insert(Certificate_Status_Code::CRL_HAS_EXPIRED);
if(crls[i]->check_signature(ca->subject_public_key()) == false)
status.insert(Certificate_Status_Code::CRL_BAD_SIGNATURE);
status.insert(Certificate_Status_Code::VALID_CRL_CHECKED);
if(crls[i]->is_revoked(*subject))
status.insert(Certificate_Status_Code::CERT_IS_REVOKED);
std::string dp = subject->crl_distribution_point();
if(!dp.empty())
{
if(dp != crls[i]->crl_issuing_distribution_point())
{
status.insert(Certificate_Status_Code::NO_MATCHING_CRLDP);
}
}
for(const auto& extension : crls[i]->extensions().extensions())
{
// XXX this is wrong - the OID might be defined but the extention not full parsed
// for example see #1652
// is the extension critical and unknown?
if(extension.second && OIDS::oid2str_or_empty(extension.first->oid_of()) == "")
{
/* NIST Certificate Path Valiadation Testing document: "When an implementation does not recognize a critical extension in the
* crlExtensions field, it shall assume that identified certificates have been revoked and are no longer valid"
*/
status.insert(Certificate_Status_Code::CERT_IS_REVOKED);
}
}
}
}
while(cert_status.size() > 0 && cert_status.back().empty())
cert_status.pop_back();
return cert_status;
}
CertificatePathStatusCodes
PKIX::check_crl(const std::vector<std::shared_ptr<const X509_Certificate>>& cert_path,
const std::vector<Certificate_Store*>& certstores,
std::chrono::system_clock::time_point ref_time)
{
if(cert_path.empty())
throw Invalid_Argument("PKIX::check_crl cert_path empty");
if(certstores.empty())
throw Invalid_Argument("PKIX::check_crl certstores empty");
std::vector<std::shared_ptr<const X509_CRL>> crls(cert_path.size());
for(size_t i = 0; i != cert_path.size(); ++i)
{
BOTAN_ASSERT_NONNULL(cert_path[i]);
for(size_t c = 0; c != certstores.size(); ++c)
{
crls[i] = certstores[c]->find_crl_for(*cert_path[i]);
if(crls[i])
break;
}
}
return PKIX::check_crl(cert_path, crls, ref_time);
}
#if defined(BOTAN_HAS_ONLINE_REVOCATION_CHECKS)
CertificatePathStatusCodes
PKIX::check_ocsp_online(const std::vector<std::shared_ptr<const X509_Certificate>>& cert_path,
const std::vector<Certificate_Store*>& trusted_certstores,
std::chrono::system_clock::time_point ref_time,
std::chrono::milliseconds timeout,
bool ocsp_check_intermediate_CAs,
std::chrono::seconds max_ocsp_age)
{
if(cert_path.empty())
throw Invalid_Argument("PKIX::check_ocsp_online cert_path empty");
std::vector<std::future<std::shared_ptr<const OCSP::Response>>> ocsp_response_futures;
size_t to_ocsp = 1;
if(ocsp_check_intermediate_CAs)
to_ocsp = cert_path.size() - 1;
if(cert_path.size() == 1)
to_ocsp = 0;
for(size_t i = 0; i < to_ocsp; ++i)
{
const std::shared_ptr<const X509_Certificate>& subject = cert_path.at(i);
const std::shared_ptr<const X509_Certificate>& issuer = cert_path.at(i+1);
if(subject->ocsp_responder() == "")
{
ocsp_response_futures.emplace_back(std::async(std::launch::deferred, [&]() -> std::shared_ptr<const OCSP::Response> {
return std::make_shared<const OCSP::Response>(Certificate_Status_Code::OCSP_NO_REVOCATION_URL);
}));
}
else
{
ocsp_response_futures.emplace_back(std::async(std::launch::async, [&]() -> std::shared_ptr<const OCSP::Response> {
OCSP::Request req(*issuer, BigInt::decode(subject->serial_number()));
HTTP::Response http;
try
{
http = HTTP::POST_sync(subject->ocsp_responder(),
"application/ocsp-request",
req.BER_encode(),
/*redirects*/1,
timeout);
}
catch(std::exception&)
{
// log e.what() ?
}
if (http.status_code() != 200)
return std::make_shared<const OCSP::Response>(Certificate_Status_Code::OCSP_SERVER_NOT_AVAILABLE);
// Check the MIME type?
return std::make_shared<const OCSP::Response>(http.body());
}));
}
}
std::vector<std::shared_ptr<const OCSP::Response>> ocsp_responses;
for(size_t i = 0; i < ocsp_response_futures.size(); ++i)
{
ocsp_responses.push_back(ocsp_response_futures[i].get());
}
return PKIX::check_ocsp(cert_path, ocsp_responses, trusted_certstores, ref_time, max_ocsp_age);
}
CertificatePathStatusCodes
PKIX::check_crl_online(const std::vector<std::shared_ptr<const X509_Certificate>>& cert_path,
const std::vector<Certificate_Store*>& certstores,
Certificate_Store_In_Memory* crl_store,
std::chrono::system_clock::time_point ref_time,
std::chrono::milliseconds timeout)
{
if(cert_path.empty())
throw Invalid_Argument("PKIX::check_crl_online cert_path empty");
if(certstores.empty())
throw Invalid_Argument("PKIX::check_crl_online certstores empty");
std::vector<std::future<std::shared_ptr<const X509_CRL>>> future_crls;
std::vector<std::shared_ptr<const X509_CRL>> crls(cert_path.size());
for(size_t i = 0; i != cert_path.size(); ++i)
{
const std::shared_ptr<const X509_Certificate>& cert = cert_path.at(i);
for(size_t c = 0; c != certstores.size(); ++c)
{
crls[i] = certstores[c]->find_crl_for(*cert);
if(crls[i])
break;
}
// TODO: check if CRL is expired and re-request?
// Only request if we don't already have a CRL
if(crls[i])
{
/*
We already have a CRL, so just insert this empty one to hold a place in the vector
so that indexes match up
*/
future_crls.emplace_back(std::future<std::shared_ptr<const X509_CRL>>());
}
else if(cert->crl_distribution_point() == "")
{
// Avoid creating a thread for this case
future_crls.emplace_back(std::async(std::launch::deferred, [&]() -> std::shared_ptr<const X509_CRL> {
throw Not_Implemented("No CRL distribution point for this certificate");
}));
}
else
{
future_crls.emplace_back(std::async(std::launch::async, [&]() -> std::shared_ptr<const X509_CRL> {
auto http = HTTP::GET_sync(cert->crl_distribution_point(),
/*redirects*/ 1, timeout);
http.throw_unless_ok();
// check the mime type?
return std::make_shared<const X509_CRL>(http.body());
}));
}
}
for(size_t i = 0; i != future_crls.size(); ++i)
{
if(future_crls[i].valid())
{
try
{
crls[i] = future_crls[i].get();
}
catch(std::exception&)
{
// crls[i] left null
// todo: log exception e.what() ?
}
}
}
const CertificatePathStatusCodes crl_status = PKIX::check_crl(cert_path, crls, ref_time);
if(crl_store)
{
for(size_t i = 0; i != crl_status.size(); ++i)
{
if(crl_status[i].count(Certificate_Status_Code::VALID_CRL_CHECKED))
{
// better be non-null, we supposedly validated it
BOTAN_ASSERT_NONNULL(crls[i]);
crl_store->add_crl(crls[i]);
}
}
}
return crl_status;
}
#endif
Certificate_Status_Code
PKIX::build_certificate_path(std::vector<std::shared_ptr<const X509_Certificate>>& cert_path,
const std::vector<Certificate_Store*>& trusted_certstores,
const std::shared_ptr<const X509_Certificate>& end_entity,
const std::vector<std::shared_ptr<const X509_Certificate>>& end_entity_extra)
{
if(end_entity->is_self_signed())
{
return Certificate_Status_Code::CANNOT_ESTABLISH_TRUST;
}
/*
* This is an inelegant but functional way of preventing path loops
* (where C1 -> C2 -> C3 -> C1). We store a set of all the certificate
* fingerprints in the path. If there is a duplicate, we error out.
* TODO: save fingerprints in result struct? Maybe useful for blacklists, etc.
*/
std::set<std::string> certs_seen;
cert_path.push_back(end_entity);
certs_seen.insert(end_entity->fingerprint("SHA-256"));
Certificate_Store_In_Memory ee_extras;
for(size_t i = 0; i != end_entity_extra.size(); ++i)
ee_extras.add_certificate(end_entity_extra[i]);
// iterate until we reach a root or cannot find the issuer
for(;;)
{
const X509_Certificate& last = *cert_path.back();
const X509_DN issuer_dn = last.issuer_dn();
const std::vector<uint8_t> auth_key_id = last.authority_key_id();
std::shared_ptr<const X509_Certificate> issuer;
bool trusted_issuer = false;
for(Certificate_Store* store : trusted_certstores)
{
issuer = store->find_cert(issuer_dn, auth_key_id);
if(issuer)
{
trusted_issuer = true;
break;
}
}
if(!issuer)
{
// fall back to searching supplemental certs
issuer = ee_extras.find_cert(issuer_dn, auth_key_id);
}
if(!issuer)
return Certificate_Status_Code::CERT_ISSUER_NOT_FOUND;
const std::string fprint = issuer->fingerprint("SHA-256");
if(certs_seen.count(fprint) > 0) // already seen?
{
return Certificate_Status_Code::CERT_CHAIN_LOOP;
}
certs_seen.insert(fprint);
cert_path.push_back(issuer);
if(issuer->is_self_signed())
{
if(trusted_issuer)
{
return Certificate_Status_Code::OK;
}
else
{
return Certificate_Status_Code::CANNOT_ESTABLISH_TRUST;
}
}
}
}
/**
* utilities for PKIX::build_all_certificate_paths
*/
namespace
{
// <certificate, trusted?>
using cert_maybe_trusted = std::pair<std::shared_ptr<const X509_Certificate>,bool>;
}
/**
* Build all possible certificate paths from the end certificate to self-signed trusted roots.
*
* All potentially valid paths are put into the cert_paths vector. If no potentially valid paths are found,
* one of the encountered errors is returned arbitrarily.
*
* todo add a path building function that returns detailed information on errors encountered while building
* the potentially numerous path candidates.
*
* Basically, a DFS is performed starting from the end certificate. A stack (vector) serves to control the DFS.
* At the beginning of each iteration, a pair is popped from the stack that contains (1) the next certificate
* to add to the path (2) a bool that indicates if the certificate is part of a trusted certstore. Ideally, we
* follow the unique issuer of the current certificate until a trusted root is reached. However, the issuer DN +
* authority key id need not be unique among the certificates used for building the path. In such a case,
* we consider all the matching issuers by pushing <IssuerCert, trusted?> on the stack for each of them.
*
*/
Certificate_Status_Code
PKIX::build_all_certificate_paths(std::vector<std::vector<std::shared_ptr<const X509_Certificate>>>& cert_paths_out,
const std::vector<Certificate_Store*>& trusted_certstores,
const std::shared_ptr<const X509_Certificate>& end_entity,
const std::vector<std::shared_ptr<const X509_Certificate>>& end_entity_extra)
{
if(!cert_paths_out.empty())
{
throw Invalid_Argument("PKIX::build_all_certificate_paths: cert_paths_out must be empty");
}
if(end_entity->is_self_signed())
{
return Certificate_Status_Code::CANNOT_ESTABLISH_TRUST;
}
/*
* Pile up error messages
*/
std::vector<Certificate_Status_Code> stats;
Certificate_Store_In_Memory ee_extras;
for(size_t i = 0; i != end_entity_extra.size(); ++i)
{
ee_extras.add_certificate(end_entity_extra[i]);
}
/*
* This is an inelegant but functional way of preventing path loops
* (where C1 -> C2 -> C3 -> C1). We store a set of all the certificate
* fingerprints in the path. If there is a duplicate, we error out.
* TODO: save fingerprints in result struct? Maybe useful for blacklists, etc.
*/
std::set<std::string> certs_seen;
// new certs are added and removed from the path during the DFS
// it is copied into cert_paths_out when we encounter a trusted root
std::vector<std::shared_ptr<const X509_Certificate>> path_so_far;
// todo can we assume that the end certificate is not trusted?
std::vector<cert_maybe_trusted> stack = { {end_entity, false} };
while(!stack.empty())
{
// found a deletion marker that guides the DFS, backtracing
if(stack.back().first == nullptr)
{
stack.pop_back();
std::string fprint = path_so_far.back()->fingerprint("SHA-256");
certs_seen.erase(fprint);
path_so_far.pop_back();
}
// process next cert on the path
else
{
std::shared_ptr<const X509_Certificate> last = stack.back().first;
bool trusted = stack.back().second;
stack.pop_back();
// certificate already seen?
const std::string fprint = last->fingerprint("SHA-256");
if(certs_seen.count(fprint) == 1)
{
stats.push_back(Certificate_Status_Code::CERT_CHAIN_LOOP);
// the current path ended in a loop
continue;
}
// the current path ends here
if(last->is_self_signed())
{
// found a trust anchor
if(trusted)
{
cert_paths_out.push_back(path_so_far);
cert_paths_out.back().push_back(last);
continue;
}
// found an untrustworthy root
else
{
stats.push_back(Certificate_Status_Code::CANNOT_ESTABLISH_TRUST);
continue;
}
}
const X509_DN issuer_dn = last->issuer_dn();
const std::vector<uint8_t> auth_key_id = last->authority_key_id();
// search for trusted issuers
std::vector<std::shared_ptr<const X509_Certificate>> trusted_issuers;
for(Certificate_Store* store : trusted_certstores)
{
auto new_issuers = store->find_all_certs(issuer_dn, auth_key_id);
trusted_issuers.insert(trusted_issuers.end(), new_issuers.begin(), new_issuers.end());
}
// search the supplemental certs
std::vector<std::shared_ptr<const X509_Certificate>> misc_issuers =
ee_extras.find_all_certs(issuer_dn, auth_key_id);
// if we could not find any issuers, the current path ends here
if(trusted_issuers.size() + misc_issuers.size() == 0)
{
stats.push_back(Certificate_Status_Code::CERT_ISSUER_NOT_FOUND);
continue;
}
// push the latest certificate onto the path_so_far
path_so_far.push_back(last);
certs_seen.emplace(fprint);
// push a deletion marker on the stack for backtracing later
stack.push_back({std::shared_ptr<const X509_Certificate>(nullptr),false});
for(const auto& trusted_cert : trusted_issuers)
{
stack.push_back({trusted_cert,true});
}
for(const auto& misc : misc_issuers)
{
stack.push_back({misc,false});
}
}
}
// could not construct any potentially valid path
if(cert_paths_out.empty())
{
if(stats.empty())
throw Internal_Error("X509 path building failed for unknown reasons");
else
// arbitrarily return the first error
return stats[0];
}
else
{
return Certificate_Status_Code::OK;
}
}
void PKIX::merge_revocation_status(CertificatePathStatusCodes& chain_status,
const CertificatePathStatusCodes& crl,
const CertificatePathStatusCodes& ocsp,
bool require_rev_on_end_entity,
bool require_rev_on_intermediates)
{
if(chain_status.empty())
throw Invalid_Argument("PKIX::merge_revocation_status chain_status was empty");
for(size_t i = 0; i != chain_status.size() - 1; ++i)
{
bool had_crl = false, had_ocsp = false;
if(i < crl.size() && crl[i].size() > 0)
{
for(auto&& code : crl[i])
{
if(code == Certificate_Status_Code::VALID_CRL_CHECKED)
{
had_crl = true;
}
chain_status[i].insert(code);
}
}
if(i < ocsp.size() && ocsp[i].size() > 0)
{
for(auto&& code : ocsp[i])
{
if(code == Certificate_Status_Code::OCSP_RESPONSE_GOOD ||
code == Certificate_Status_Code::OCSP_NO_REVOCATION_URL || // softfail
code == Certificate_Status_Code::OCSP_SERVER_NOT_AVAILABLE) // softfail
{
had_ocsp = true;
}
chain_status[i].insert(code);
}
}
if(had_crl == false && had_ocsp == false)
{
if((require_rev_on_end_entity && i == 0) ||
(require_rev_on_intermediates && i > 0))
{
chain_status[i].insert(Certificate_Status_Code::NO_REVOCATION_DATA);
}
}
}
}
Certificate_Status_Code PKIX::overall_status(const CertificatePathStatusCodes& cert_status)
{
if(cert_status.empty())
throw Invalid_Argument("PKIX::overall_status empty cert status");
Certificate_Status_Code overall_status = Certificate_Status_Code::OK;
// take the "worst" error as overall
for(const std::set<Certificate_Status_Code>& s : cert_status)
{
if(!s.empty())
{
auto worst = *s.rbegin();
// Leave informative OCSP/CRL confirmations on cert-level status only
if(worst >= Certificate_Status_Code::FIRST_ERROR_STATUS && worst > overall_status)
{
overall_status = worst;
}
}
}
return overall_status;
}
Path_Validation_Result x509_path_validate(
const std::vector<X509_Certificate>& end_certs,
const Path_Validation_Restrictions& restrictions,
const std::vector<Certificate_Store*>& trusted_roots,
const std::string& hostname,
Usage_Type usage,
std::chrono::system_clock::time_point ref_time,
std::chrono::milliseconds ocsp_timeout,
const std::vector<std::shared_ptr<const OCSP::Response>>& ocsp_resp)
{
if(end_certs.empty())
{
throw Invalid_Argument("x509_path_validate called with no subjects");
}
std::shared_ptr<const X509_Certificate> end_entity(std::make_shared<const X509_Certificate>(end_certs[0]));
std::vector<std::shared_ptr<const X509_Certificate>> end_entity_extra;
for(size_t i = 1; i < end_certs.size(); ++i)
{
end_entity_extra.push_back(std::make_shared<const X509_Certificate>(end_certs[i]));
}
std::vector<std::vector<std::shared_ptr<const X509_Certificate>>> cert_paths;
Certificate_Status_Code path_building_result = PKIX::build_all_certificate_paths(cert_paths, trusted_roots, end_entity, end_entity_extra);
// If we cannot successfully build a chain to a trusted self-signed root, stop now
if(path_building_result != Certificate_Status_Code::OK)
{
return Path_Validation_Result(path_building_result);
}
std::vector<Path_Validation_Result> error_results;
// Try validating all the potentially valid paths and return the first one to validate properly
for(auto cert_path : cert_paths)
{
CertificatePathStatusCodes status =
PKIX::check_chain(cert_path, ref_time,
hostname, usage,
restrictions.minimum_key_strength(),
restrictions.trusted_hashes());
CertificatePathStatusCodes crl_status =
PKIX::check_crl(cert_path, trusted_roots, ref_time);
CertificatePathStatusCodes ocsp_status;
if(ocsp_resp.size() > 0)
{
ocsp_status = PKIX::check_ocsp(cert_path, ocsp_resp, trusted_roots, ref_time, restrictions.max_ocsp_age());
}
if(ocsp_status.empty() && ocsp_timeout != std::chrono::milliseconds(0))
{
#if defined(BOTAN_TARGET_OS_HAS_THREADS) && defined(BOTAN_HAS_HTTP_UTIL)
ocsp_status = PKIX::check_ocsp_online(cert_path, trusted_roots, ref_time,
ocsp_timeout, restrictions.ocsp_all_intermediates());
#else
ocsp_status.resize(1);
ocsp_status[0].insert(Certificate_Status_Code::OCSP_NO_HTTP);
#endif
}
PKIX::merge_revocation_status(status, crl_status, ocsp_status,
restrictions.require_revocation_information(),
restrictions.ocsp_all_intermediates());
Path_Validation_Result pvd(status, std::move(cert_path));
if(pvd.successful_validation())
{
return pvd;
}
else
{
error_results.push_back(std::move(pvd));
}
}
return error_results[0];
}
Path_Validation_Result x509_path_validate(
const X509_Certificate& end_cert,
const Path_Validation_Restrictions& restrictions,
const std::vector<Certificate_Store*>& trusted_roots,
const std::string& hostname,
Usage_Type usage,
std::chrono::system_clock::time_point when,
std::chrono::milliseconds ocsp_timeout,
const std::vector<std::shared_ptr<const OCSP::Response>>& ocsp_resp)
{
std::vector<X509_Certificate> certs;
certs.push_back(end_cert);
return x509_path_validate(certs, restrictions, trusted_roots, hostname, usage, when, ocsp_timeout, ocsp_resp);
}
Path_Validation_Result x509_path_validate(
const std::vector<X509_Certificate>& end_certs,
const Path_Validation_Restrictions& restrictions,
const Certificate_Store& store,
const std::string& hostname,
Usage_Type usage,
std::chrono::system_clock::time_point when,
std::chrono::milliseconds ocsp_timeout,
const std::vector<std::shared_ptr<const OCSP::Response>>& ocsp_resp)
{
std::vector<Certificate_Store*> trusted_roots;
trusted_roots.push_back(const_cast<Certificate_Store*>(&store));
return x509_path_validate(end_certs, restrictions, trusted_roots, hostname, usage, when, ocsp_timeout, ocsp_resp);
}
Path_Validation_Result x509_path_validate(
const X509_Certificate& end_cert,
const Path_Validation_Restrictions& restrictions,
const Certificate_Store& store,
const std::string& hostname,
Usage_Type usage,
std::chrono::system_clock::time_point when,
std::chrono::milliseconds ocsp_timeout,
const std::vector<std::shared_ptr<const OCSP::Response>>& ocsp_resp)
{
std::vector<X509_Certificate> certs;
certs.push_back(end_cert);
std::vector<Certificate_Store*> trusted_roots;
trusted_roots.push_back(const_cast<Certificate_Store*>(&store));
return x509_path_validate(certs, restrictions, trusted_roots, hostname, usage, when, ocsp_timeout, ocsp_resp);
}
Path_Validation_Restrictions::Path_Validation_Restrictions(bool require_rev,
size_t key_strength,
bool ocsp_intermediates,
std::chrono::seconds max_ocsp_age) :
m_require_revocation_information(require_rev),
m_ocsp_all_intermediates(ocsp_intermediates),
m_minimum_key_strength(key_strength),
m_max_ocsp_age(max_ocsp_age)
{
if(key_strength <= 80)
{ m_trusted_hashes.insert("SHA-160"); }
m_trusted_hashes.insert("SHA-224");
m_trusted_hashes.insert("SHA-256");
m_trusted_hashes.insert("SHA-384");
m_trusted_hashes.insert("SHA-512");
}
namespace {
CertificatePathStatusCodes find_warnings(const CertificatePathStatusCodes& all_statuses)
{
CertificatePathStatusCodes warnings;
for(const auto& status_set_i : all_statuses)
{
std::set<Certificate_Status_Code> warning_set_i;
for(const auto& code : status_set_i)
{
if(code >= Certificate_Status_Code::FIRST_WARNING_STATUS &&
code < Certificate_Status_Code::FIRST_ERROR_STATUS)
{
warning_set_i.insert(code);
}
}
warnings.push_back(warning_set_i);
}
return warnings;
}
}
Path_Validation_Result::Path_Validation_Result(CertificatePathStatusCodes status,
std::vector<std::shared_ptr<const X509_Certificate>>&& cert_chain) :
m_all_status(status),
m_warnings(find_warnings(m_all_status)),
m_cert_path(cert_chain),
m_overall(PKIX::overall_status(m_all_status))
{
}
const X509_Certificate& Path_Validation_Result::trust_root() const
{
if(m_cert_path.empty())
throw Invalid_State("Path_Validation_Result::trust_root no path set");
if(result() != Certificate_Status_Code::VERIFIED)
throw Invalid_State("Path_Validation_Result::trust_root meaningless with invalid status");
return *m_cert_path[m_cert_path.size()-1];
}
std::set<std::string> Path_Validation_Result::trusted_hashes() const
{
std::set<std::string> hashes;
for(size_t i = 0; i != m_cert_path.size(); ++i)
hashes.insert(m_cert_path[i]->hash_used_for_signature());
return hashes;
}
bool Path_Validation_Result::successful_validation() const
{
return (result() == Certificate_Status_Code::VERIFIED ||
result() == Certificate_Status_Code::OCSP_RESPONSE_GOOD ||
result() == Certificate_Status_Code::VALID_CRL_CHECKED);
}
bool Path_Validation_Result::no_warnings() const
{
for(auto status_set_i : m_warnings)
if(!status_set_i.empty())
return false;
return true;
}
CertificatePathStatusCodes Path_Validation_Result::warnings() const
{
return m_warnings;
}
std::string Path_Validation_Result::result_string() const
{
return status_string(result());
}
const char* Path_Validation_Result::status_string(Certificate_Status_Code code)
{
if(const char* s = to_string(code))
return s;
return "Unknown error";
}
std::string Path_Validation_Result::warnings_string() const
{
const std::string sep(", ");
std::string res;
for(size_t i = 0; i < m_warnings.size(); i++)
{
for(auto code : m_warnings[i])
res += "[" + std::to_string(i) + "] " + status_string(code) + sep;
}
// remove last sep
if(res.size() >= sep.size())
res = res.substr(0, res.size() - sep.size());
return res;
}
}