Source code

Revision control

Copy as Markdown

Other Tools

/*
* (C) 1999-2010,2015,2018 Jack Lloyd
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/pubkey.h>
#include <botan/der_enc.h>
#include <botan/ber_dec.h>
#include <botan/bigint.h>
#include <botan/pk_ops.h>
#include <botan/internal/ct_utils.h>
#include <botan/rng.h>
namespace Botan {
secure_vector<uint8_t> PK_Decryptor::decrypt(const uint8_t in[], size_t length) const
{
uint8_t valid_mask = 0;
secure_vector<uint8_t> decoded = do_decrypt(valid_mask, in, length);
if(valid_mask == 0)
throw Decoding_Error("Invalid public key ciphertext, cannot decrypt");
return decoded;
}
secure_vector<uint8_t>
PK_Decryptor::decrypt_or_random(const uint8_t in[],
size_t length,
size_t expected_pt_len,
RandomNumberGenerator& rng,
const uint8_t required_content_bytes[],
const uint8_t required_content_offsets[],
size_t required_contents_length) const
{
const secure_vector<uint8_t> fake_pms = rng.random_vec(expected_pt_len);
uint8_t decrypt_valid = 0;
secure_vector<uint8_t> decoded = do_decrypt(decrypt_valid, in, length);
auto valid_mask = CT::Mask<uint8_t>::is_equal(decrypt_valid, 0xFF);
valid_mask &= CT::Mask<uint8_t>(CT::Mask<size_t>::is_zero(decoded.size() ^ expected_pt_len));
decoded.resize(expected_pt_len);
for(size_t i = 0; i != required_contents_length; ++i)
{
/*
These values are chosen by the application and for TLS are constants,
so this early failure via assert is fine since we know 0,1 < 48
If there is a protocol that has content checks on the key where
the expected offsets are controllable by the attacker this could
still leak.
Alternately could always reduce the offset modulo the length?
*/
const uint8_t exp = required_content_bytes[i];
const uint8_t off = required_content_offsets[i];
BOTAN_ASSERT(off < expected_pt_len, "Offset in range of plaintext");
auto eq = CT::Mask<uint8_t>::is_equal(decoded[off], exp);
valid_mask &= eq;
}
// If valid_mask is false, assign fake pre master instead
valid_mask.select_n(decoded.data(), decoded.data(), fake_pms.data(), expected_pt_len);
return decoded;
}
secure_vector<uint8_t>
PK_Decryptor::decrypt_or_random(const uint8_t in[],
size_t length,
size_t expected_pt_len,
RandomNumberGenerator& rng) const
{
return decrypt_or_random(in, length, expected_pt_len, rng,
nullptr, nullptr, 0);
}
PK_Encryptor_EME::PK_Encryptor_EME(const Public_Key& key,
RandomNumberGenerator& rng,
const std::string& padding,
const std::string& provider)
{
m_op = key.create_encryption_op(rng, padding, provider);
if(!m_op)
throw Invalid_Argument("Key type " + key.algo_name() + " does not support encryption");
}
PK_Encryptor_EME::~PK_Encryptor_EME() { /* for unique_ptr */ }
size_t PK_Encryptor_EME::ciphertext_length(size_t ptext_len) const
{
return m_op->ciphertext_length(ptext_len);
}
std::vector<uint8_t>
PK_Encryptor_EME::enc(const uint8_t in[], size_t length, RandomNumberGenerator& rng) const
{
return unlock(m_op->encrypt(in, length, rng));
}
size_t PK_Encryptor_EME::maximum_input_size() const
{
return m_op->max_input_bits() / 8;
}
PK_Decryptor_EME::PK_Decryptor_EME(const Private_Key& key,
RandomNumberGenerator& rng,
const std::string& padding,
const std::string& provider)
{
m_op = key.create_decryption_op(rng, padding, provider);
if(!m_op)
throw Invalid_Argument("Key type " + key.algo_name() + " does not support decryption");
}
PK_Decryptor_EME::~PK_Decryptor_EME() { /* for unique_ptr */ }
size_t PK_Decryptor_EME::plaintext_length(size_t ctext_len) const
{
return m_op->plaintext_length(ctext_len);
}
secure_vector<uint8_t> PK_Decryptor_EME::do_decrypt(uint8_t& valid_mask,
const uint8_t in[], size_t in_len) const
{
return m_op->decrypt(valid_mask, in, in_len);
}
PK_KEM_Encryptor::PK_KEM_Encryptor(const Public_Key& key,
RandomNumberGenerator& rng,
const std::string& param,
const std::string& provider)
{
m_op = key.create_kem_encryption_op(rng, param, provider);
if(!m_op)
throw Invalid_Argument("Key type " + key.algo_name() + " does not support KEM encryption");
}
PK_KEM_Encryptor::~PK_KEM_Encryptor() { /* for unique_ptr */ }
void PK_KEM_Encryptor::encrypt(secure_vector<uint8_t>& out_encapsulated_key,
secure_vector<uint8_t>& out_shared_key,
size_t desired_shared_key_len,
Botan::RandomNumberGenerator& rng,
const uint8_t salt[],
size_t salt_len)
{
m_op->kem_encrypt(out_encapsulated_key,
out_shared_key,
desired_shared_key_len,
rng,
salt,
salt_len);
}
PK_KEM_Decryptor::PK_KEM_Decryptor(const Private_Key& key,
RandomNumberGenerator& rng,
const std::string& param,
const std::string& provider)
{
m_op = key.create_kem_decryption_op(rng, param, provider);
if(!m_op)
throw Invalid_Argument("Key type " + key.algo_name() + " does not support KEM decryption");
}
PK_KEM_Decryptor::~PK_KEM_Decryptor() { /* for unique_ptr */ }
secure_vector<uint8_t> PK_KEM_Decryptor::decrypt(const uint8_t encap_key[],
size_t encap_key_len,
size_t desired_shared_key_len,
const uint8_t salt[],
size_t salt_len)
{
return m_op->kem_decrypt(encap_key, encap_key_len,
desired_shared_key_len,
salt, salt_len);
}
PK_Key_Agreement::PK_Key_Agreement(const Private_Key& key,
RandomNumberGenerator& rng,
const std::string& kdf,
const std::string& provider)
{
m_op = key.create_key_agreement_op(rng, kdf, provider);
if(!m_op)
throw Invalid_Argument("Key type " + key.algo_name() + " does not support key agreement");
}
PK_Key_Agreement::~PK_Key_Agreement() { /* for unique_ptr */ }
PK_Key_Agreement& PK_Key_Agreement::operator=(PK_Key_Agreement&& other)
{
if(this != &other)
{
m_op = std::move(other.m_op);
}
return (*this);
}
PK_Key_Agreement::PK_Key_Agreement(PK_Key_Agreement&& other) :
m_op(std::move(other.m_op))
{}
size_t PK_Key_Agreement::agreed_value_size() const
{
return m_op->agreed_value_size();
}
SymmetricKey PK_Key_Agreement::derive_key(size_t key_len,
const uint8_t in[], size_t in_len,
const uint8_t salt[],
size_t salt_len) const
{
return m_op->agree(key_len, in, in_len, salt, salt_len);
}
static void check_der_format_supported(Signature_Format format, size_t parts)
{
if(format != IEEE_1363 && parts == 1)
throw Invalid_Argument("PK: This algorithm does not support DER encoding");
}
PK_Signer::PK_Signer(const Private_Key& key,
RandomNumberGenerator& rng,
const std::string& emsa,
Signature_Format format,
const std::string& provider)
{
m_op = key.create_signature_op(rng, emsa, provider);
if(!m_op)
throw Invalid_Argument("Key type " + key.algo_name() + " does not support signature generation");
m_sig_format = format;
m_parts = key.message_parts();
m_part_size = key.message_part_size();
check_der_format_supported(format, m_parts);
}
PK_Signer::~PK_Signer() { /* for unique_ptr */ }
void PK_Signer::update(const uint8_t in[], size_t length)
{
m_op->update(in, length);
}
namespace {
std::vector<uint8_t> der_encode_signature(const std::vector<uint8_t>& sig,
size_t parts,
size_t part_size)
{
if(sig.size() % parts != 0 || sig.size() != parts * part_size)
throw Encoding_Error("Unexpected size for DER signature");
std::vector<BigInt> sig_parts(parts);
for(size_t i = 0; i != sig_parts.size(); ++i)
sig_parts[i].binary_decode(&sig[part_size*i], part_size);
std::vector<uint8_t> output;
DER_Encoder(output)
.start_cons(SEQUENCE)
.encode_list(sig_parts)
.end_cons();
return output;
}
}
size_t PK_Signer::signature_length() const
{
if(m_sig_format == IEEE_1363)
{
return m_op->signature_length();
}
else if(m_sig_format == DER_SEQUENCE)
{
// This is a large over-estimate but its easier than computing
// the exact value
return m_op->signature_length() + (8 + 4*m_parts);
}
else
throw Internal_Error("PK_Signer: Invalid signature format enum");
}
std::vector<uint8_t> PK_Signer::signature(RandomNumberGenerator& rng)
{
const std::vector<uint8_t> sig = unlock(m_op->sign(rng));
if(m_sig_format == IEEE_1363)
{
return sig;
}
else if(m_sig_format == DER_SEQUENCE)
{
return der_encode_signature(sig, m_parts, m_part_size);
}
else
throw Internal_Error("PK_Signer: Invalid signature format enum");
}
PK_Verifier::PK_Verifier(const Public_Key& key,
const std::string& emsa,
Signature_Format format,
const std::string& provider)
{
m_op = key.create_verification_op(emsa, provider);
if(!m_op)
throw Invalid_Argument("Key type " + key.algo_name() + " does not support signature verification");
m_sig_format = format;
m_parts = key.message_parts();
m_part_size = key.message_part_size();
check_der_format_supported(format, m_parts);
}
PK_Verifier::~PK_Verifier() { /* for unique_ptr */ }
void PK_Verifier::set_input_format(Signature_Format format)
{
check_der_format_supported(format, m_parts);
m_sig_format = format;
}
bool PK_Verifier::verify_message(const uint8_t msg[], size_t msg_length,
const uint8_t sig[], size_t sig_length)
{
update(msg, msg_length);
return check_signature(sig, sig_length);
}
void PK_Verifier::update(const uint8_t in[], size_t length)
{
m_op->update(in, length);
}
bool PK_Verifier::check_signature(const uint8_t sig[], size_t length)
{
try {
if(m_sig_format == IEEE_1363)
{
return m_op->is_valid_signature(sig, length);
}
else if(m_sig_format == DER_SEQUENCE)
{
std::vector<uint8_t> real_sig;
BER_Decoder decoder(sig, length);
BER_Decoder ber_sig = decoder.start_cons(SEQUENCE);
BOTAN_ASSERT_NOMSG(m_parts != 0 && m_part_size != 0);
size_t count = 0;
while(ber_sig.more_items())
{
BigInt sig_part;
ber_sig.decode(sig_part);
real_sig += BigInt::encode_1363(sig_part, m_part_size);
++count;
}
if(count != m_parts)
throw Decoding_Error("PK_Verifier: signature size invalid");
const std::vector<uint8_t> reencoded =
der_encode_signature(real_sig, m_parts, m_part_size);
if(reencoded.size() != length ||
same_mem(reencoded.data(), sig, reencoded.size()) == false)
{
throw Decoding_Error("PK_Verifier: signature is not the canonical DER encoding");
}
return m_op->is_valid_signature(real_sig.data(), real_sig.size());
}
else
throw Internal_Error("PK_Verifier: Invalid signature format enum");
}
catch(Invalid_Argument&) { return false; }
}
}