ed25519.cpp |
|
2154 |
ed25519.h |
Create a Ed25519 Public Key.
@param alg_id the X.509 algorithm identifier
@param key_bits DER encoded public key bits
|
3565 |
ed25519_fe.cpp |
h = f * g
Can overlap h with f or g.
Preconditions:
|f| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
|g| bounded by 1.65*2^26,1.65*2^25,1.65*2^26,1.65*2^25,etc.
Postconditions:
|h| bounded by 1.01*2^25,1.01*2^24,1.01*2^25,1.01*2^24,etc.
|
28448 |
ed25519_fe.h |
An element of the field \\Z/(2^255-19)
|
5107 |
ed25519_internal.h |
ge means group element.
Here the group is the set of pairs (x,y) of field elements (see fe.h)
satisfying -x^2 + y^2 = 1 + d x^2y^2
where d = -121665/121666.
Representations:
ge_p3 (extended): (X:Y:Z:T) satisfying x=X/Z, y=Y/Z, XY=ZT
|
2692 |
ed25519_key.cpp |
Ed25519 verifying operation
|
9130 |
ge.cpp |
Representations:
ge_p2 (projective): (X:Y:Z) satisfying x=X/Z, y=Y/Z
ge_p3 (extended): (X:Y:Z:T) satisfying x=X/Z, y=Y/Z, XY=ZT
ge_p1p1 (completed): ((X:Z),(Y:T)) satisfying x=X/Z, y=Y/T
ge_precomp (Duif): (y+x,y-x,2dxy)
|
117676 |
info.txt |
|
188 |
sc_muladd.cpp |
Input:
a[0]+256*a[1]+...+256^31*a[31] = a
b[0]+256*b[1]+...+256^31*b[31] = b
c[0]+256*c[1]+...+256^31*c[31] = c
Output:
s[0]+256*s[1]+...+256^31*s[31] = (ab+c) mod l
where l = 2^252 + 27742317777372353535851937790883648493.
|
7845 |
sc_reduce.cpp |
Input:
s[0]+256*s[1]+...+256^63*s[63] = s
Output:
s[0]+256*s[1]+...+256^31*s[31] = s mod l
where l = 2^252 + 27742317777372353535851937790883648493.
Overwrites s in place.
|
4878 |