Source code

Revision control

Copy as Markdown

Other Tools

/*
* DES
* (C) 1999-2008,2018 Jack Lloyd
*
* Based on a public domain implemenation by Phil Karn (who in turn
* credited Richard Outerbridge and Jim Gillogly)
*
* Botan is released under the Simplified BSD License (see license.txt)
*/
#include <botan/des.h>
#include <botan/loadstor.h>
#include <botan/rotate.h>
namespace Botan {
namespace {
/*
* DES Key Schedule
*/
void des_key_schedule(uint32_t round_key[32], const uint8_t key[8])
{
static const uint8_t ROT[16] = { 1, 1, 2, 2, 2, 2, 2, 2,
1, 2, 2, 2, 2, 2, 2, 1 };
uint32_t C = ((key[7] & 0x80) << 20) | ((key[6] & 0x80) << 19) |
((key[5] & 0x80) << 18) | ((key[4] & 0x80) << 17) |
((key[3] & 0x80) << 16) | ((key[2] & 0x80) << 15) |
((key[1] & 0x80) << 14) | ((key[0] & 0x80) << 13) |
((key[7] & 0x40) << 13) | ((key[6] & 0x40) << 12) |
((key[5] & 0x40) << 11) | ((key[4] & 0x40) << 10) |
((key[3] & 0x40) << 9) | ((key[2] & 0x40) << 8) |
((key[1] & 0x40) << 7) | ((key[0] & 0x40) << 6) |
((key[7] & 0x20) << 6) | ((key[6] & 0x20) << 5) |
((key[5] & 0x20) << 4) | ((key[4] & 0x20) << 3) |
((key[3] & 0x20) << 2) | ((key[2] & 0x20) << 1) |
((key[1] & 0x20) ) | ((key[0] & 0x20) >> 1) |
((key[7] & 0x10) >> 1) | ((key[6] & 0x10) >> 2) |
((key[5] & 0x10) >> 3) | ((key[4] & 0x10) >> 4);
uint32_t D = ((key[7] & 0x02) << 26) | ((key[6] & 0x02) << 25) |
((key[5] & 0x02) << 24) | ((key[4] & 0x02) << 23) |
((key[3] & 0x02) << 22) | ((key[2] & 0x02) << 21) |
((key[1] & 0x02) << 20) | ((key[0] & 0x02) << 19) |
((key[7] & 0x04) << 17) | ((key[6] & 0x04) << 16) |
((key[5] & 0x04) << 15) | ((key[4] & 0x04) << 14) |
((key[3] & 0x04) << 13) | ((key[2] & 0x04) << 12) |
((key[1] & 0x04) << 11) | ((key[0] & 0x04) << 10) |
((key[7] & 0x08) << 8) | ((key[6] & 0x08) << 7) |
((key[5] & 0x08) << 6) | ((key[4] & 0x08) << 5) |
((key[3] & 0x08) << 4) | ((key[2] & 0x08) << 3) |
((key[1] & 0x08) << 2) | ((key[0] & 0x08) << 1) |
((key[3] & 0x10) >> 1) | ((key[2] & 0x10) >> 2) |
((key[1] & 0x10) >> 3) | ((key[0] & 0x10) >> 4);
for(size_t i = 0; i != 16; ++i)
{
C = ((C << ROT[i]) | (C >> (28-ROT[i]))) & 0x0FFFFFFF;
D = ((D << ROT[i]) | (D >> (28-ROT[i]))) & 0x0FFFFFFF;
round_key[2*i ] = ((C & 0x00000010) << 22) | ((C & 0x00000800) << 17) |
((C & 0x00000020) << 16) | ((C & 0x00004004) << 15) |
((C & 0x00000200) << 11) | ((C & 0x00020000) << 10) |
((C & 0x01000000) >> 6) | ((C & 0x00100000) >> 4) |
((C & 0x00010000) << 3) | ((C & 0x08000000) >> 2) |
((C & 0x00800000) << 1) | ((D & 0x00000010) << 8) |
((D & 0x00000002) << 7) | ((D & 0x00000001) << 2) |
((D & 0x00000200) ) | ((D & 0x00008000) >> 2) |
((D & 0x00000088) >> 3) | ((D & 0x00001000) >> 7) |
((D & 0x00080000) >> 9) | ((D & 0x02020000) >> 14) |
((D & 0x00400000) >> 21);
round_key[2*i+1] = ((C & 0x00000001) << 28) | ((C & 0x00000082) << 18) |
((C & 0x00002000) << 14) | ((C & 0x00000100) << 10) |
((C & 0x00001000) << 9) | ((C & 0x00040000) << 6) |
((C & 0x02400000) << 4) | ((C & 0x00008000) << 2) |
((C & 0x00200000) >> 1) | ((C & 0x04000000) >> 10) |
((D & 0x00000020) << 6) | ((D & 0x00000100) ) |
((D & 0x00000800) >> 1) | ((D & 0x00000040) >> 3) |
((D & 0x00010000) >> 4) | ((D & 0x00000400) >> 5) |
((D & 0x00004000) >> 10) | ((D & 0x04000000) >> 13) |
((D & 0x00800000) >> 14) | ((D & 0x00100000) >> 18) |
((D & 0x01000000) >> 24) | ((D & 0x08000000) >> 26);
}
}
inline uint32_t spbox(uint32_t T0, uint32_t T1)
{
return DES_SPBOX1[get_byte(0, T0)] ^ DES_SPBOX2[get_byte(0, T1)] ^
DES_SPBOX3[get_byte(1, T0)] ^ DES_SPBOX4[get_byte(1, T1)] ^
DES_SPBOX5[get_byte(2, T0)] ^ DES_SPBOX6[get_byte(2, T1)] ^
DES_SPBOX7[get_byte(3, T0)] ^ DES_SPBOX8[get_byte(3, T1)];
}
/*
* DES Encryption
*/
inline void des_encrypt(uint32_t& Lr, uint32_t& Rr,
const uint32_t round_key[32])
{
uint32_t L = Lr;
uint32_t R = Rr;
for(size_t i = 0; i != 16; i += 2)
{
L ^= spbox(rotr<4>(R) ^ round_key[2*i ], R ^ round_key[2*i+1]);
R ^= spbox(rotr<4>(L) ^ round_key[2*i+2], L ^ round_key[2*i+3]);
}
Lr = L;
Rr = R;
}
inline void des_encrypt_x2(uint32_t& L0r, uint32_t& R0r,
uint32_t& L1r, uint32_t& R1r,
const uint32_t round_key[32])
{
uint32_t L0 = L0r;
uint32_t R0 = R0r;
uint32_t L1 = L1r;
uint32_t R1 = R1r;
for(size_t i = 0; i != 16; i += 2)
{
L0 ^= spbox(rotr<4>(R0) ^ round_key[2*i ], R0 ^ round_key[2*i+1]);
L1 ^= spbox(rotr<4>(R1) ^ round_key[2*i ], R1 ^ round_key[2*i+1]);
R0 ^= spbox(rotr<4>(L0) ^ round_key[2*i+2], L0 ^ round_key[2*i+3]);
R1 ^= spbox(rotr<4>(L1) ^ round_key[2*i+2], L1 ^ round_key[2*i+3]);
}
L0r = L0;
R0r = R0;
L1r = L1;
R1r = R1;
}
/*
* DES Decryption
*/
inline void des_decrypt(uint32_t& Lr, uint32_t& Rr,
const uint32_t round_key[32])
{
uint32_t L = Lr;
uint32_t R = Rr;
for(size_t i = 16; i != 0; i -= 2)
{
L ^= spbox(rotr<4>(R) ^ round_key[2*i - 2], R ^ round_key[2*i - 1]);
R ^= spbox(rotr<4>(L) ^ round_key[2*i - 4], L ^ round_key[2*i - 3]);
}
Lr = L;
Rr = R;
}
inline void des_decrypt_x2(uint32_t& L0r, uint32_t& R0r,
uint32_t& L1r, uint32_t& R1r,
const uint32_t round_key[32])
{
uint32_t L0 = L0r;
uint32_t R0 = R0r;
uint32_t L1 = L1r;
uint32_t R1 = R1r;
for(size_t i = 16; i != 0; i -= 2)
{
L0 ^= spbox(rotr<4>(R0) ^ round_key[2*i - 2], R0 ^ round_key[2*i - 1]);
L1 ^= spbox(rotr<4>(R1) ^ round_key[2*i - 2], R1 ^ round_key[2*i - 1]);
R0 ^= spbox(rotr<4>(L0) ^ round_key[2*i - 4], L0 ^ round_key[2*i - 3]);
R1 ^= spbox(rotr<4>(L1) ^ round_key[2*i - 4], L1 ^ round_key[2*i - 3]);
}
L0r = L0;
R0r = R0;
L1r = L1;
R1r = R1;
}
inline void des_IP(uint32_t& L, uint32_t& R, const uint8_t block[])
{
// IP sequence by Wei Dai, taken from public domain Crypto++
L = load_be<uint32_t>(block, 0);
R = load_be<uint32_t>(block, 1);
uint32_t T;
R = rotl<4>(R);
T = (L ^ R) & 0xF0F0F0F0;
L ^= T;
R = rotr<20>(R ^ T);
T = (L ^ R) & 0xFFFF0000;
L ^= T;
R = rotr<18>(R ^ T);
T = (L ^ R) & 0x33333333;
L ^= T;
R = rotr<6>(R ^ T);
T = (L ^ R) & 0x00FF00FF;
L ^= T;
R = rotl<9>(R ^ T);
T = (L ^ R) & 0xAAAAAAAA;
L = rotl<1>(L ^ T);
R ^= T;
}
inline void des_FP(uint32_t L, uint32_t R, uint8_t out[])
{
// FP sequence by Wei Dai, taken from public domain Crypto++
uint32_t T;
R = rotr<1>(R);
T = (L ^ R) & 0xAAAAAAAA;
R ^= T;
L = rotr<9>(L ^ T);
T = (L ^ R) & 0x00FF00FF;
R ^= T;
L = rotl<6>(L ^ T);
T = (L ^ R) & 0x33333333;
R ^= T;
L = rotl<18>(L ^ T);
T = (L ^ R) & 0xFFFF0000;
R ^= T;
L = rotl<20>(L ^ T);
T = (L ^ R) & 0xF0F0F0F0;
R ^= T;
L = rotr<4>(L ^ T);
store_be(out, R, L);
}
}
/*
* DES Encryption
*/
void DES::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
verify_key_set(m_round_key.empty() == false);
while(blocks >= 2)
{
uint32_t L0, R0;
uint32_t L1, R1;
des_IP(L0, R0, in);
des_IP(L1, R1, in + BLOCK_SIZE);
des_encrypt_x2(L0, R0, L1, R1, m_round_key.data());
des_FP(L0, R0, out);
des_FP(L1, R1, out + BLOCK_SIZE);
in += 2*BLOCK_SIZE;
out += 2*BLOCK_SIZE;
blocks -= 2;
}
for(size_t i = 0; i < blocks; ++i)
{
uint32_t L, R;
des_IP(L, R, in + BLOCK_SIZE*i);
des_encrypt(L, R, m_round_key.data());
des_FP(L, R, out + BLOCK_SIZE*i);
}
}
/*
* DES Decryption
*/
void DES::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
verify_key_set(m_round_key.empty() == false);
while(blocks >= 2)
{
uint32_t L0, R0;
uint32_t L1, R1;
des_IP(L0, R0, in);
des_IP(L1, R1, in + BLOCK_SIZE);
des_decrypt_x2(L0, R0, L1, R1, m_round_key.data());
des_FP(L0, R0, out);
des_FP(L1, R1, out + BLOCK_SIZE);
in += 2*BLOCK_SIZE;
out += 2*BLOCK_SIZE;
blocks -= 2;
}
for(size_t i = 0; i < blocks; ++i)
{
uint32_t L, R;
des_IP(L, R, in + BLOCK_SIZE*i);
des_decrypt(L, R, m_round_key.data());
des_FP(L, R, out + BLOCK_SIZE*i);
}
}
/*
* DES Key Schedule
*/
void DES::key_schedule(const uint8_t key[], size_t)
{
m_round_key.resize(32);
des_key_schedule(m_round_key.data(), key);
}
void DES::clear()
{
zap(m_round_key);
}
/*
* TripleDES Encryption
*/
void TripleDES::encrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
verify_key_set(m_round_key.empty() == false);
while(blocks >= 2)
{
uint32_t L0, R0;
uint32_t L1, R1;
des_IP(L0, R0, in);
des_IP(L1, R1, in + BLOCK_SIZE);
des_encrypt_x2(L0, R0, L1, R1, &m_round_key[0]);
des_decrypt_x2(R0, L0, R1, L1, &m_round_key[32]);
des_encrypt_x2(L0, R0, L1, R1, &m_round_key[64]);
des_FP(L0, R0, out);
des_FP(L1, R1, out + BLOCK_SIZE);
in += 2*BLOCK_SIZE;
out += 2*BLOCK_SIZE;
blocks -= 2;
}
for(size_t i = 0; i != blocks; ++i)
{
uint32_t L, R;
des_IP(L, R, in + BLOCK_SIZE*i);
des_encrypt(L, R, &m_round_key[0]);
des_decrypt(R, L, &m_round_key[32]);
des_encrypt(L, R, &m_round_key[64]);
des_FP(L, R, out + BLOCK_SIZE*i);
}
}
/*
* TripleDES Decryption
*/
void TripleDES::decrypt_n(const uint8_t in[], uint8_t out[], size_t blocks) const
{
verify_key_set(m_round_key.empty() == false);
while(blocks >= 2)
{
uint32_t L0, R0;
uint32_t L1, R1;
des_IP(L0, R0, in);
des_IP(L1, R1, in + BLOCK_SIZE);
des_decrypt_x2(L0, R0, L1, R1, &m_round_key[64]);
des_encrypt_x2(R0, L0, R1, L1, &m_round_key[32]);
des_decrypt_x2(L0, R0, L1, R1, &m_round_key[0]);
des_FP(L0, R0, out);
des_FP(L1, R1, out + BLOCK_SIZE);
in += 2*BLOCK_SIZE;
out += 2*BLOCK_SIZE;
blocks -= 2;
}
for(size_t i = 0; i != blocks; ++i)
{
uint32_t L, R;
des_IP(L, R, in + BLOCK_SIZE*i);
des_decrypt(L, R, &m_round_key[64]);
des_encrypt(R, L, &m_round_key[32]);
des_decrypt(L, R, &m_round_key[0]);
des_FP(L, R, out + BLOCK_SIZE*i);
}
}
/*
* TripleDES Key Schedule
*/
void TripleDES::key_schedule(const uint8_t key[], size_t length)
{
m_round_key.resize(3*32);
des_key_schedule(&m_round_key[0], key);
des_key_schedule(&m_round_key[32], key + 8);
if(length == 24)
des_key_schedule(&m_round_key[64], key + 16);
else
copy_mem(&m_round_key[64], &m_round_key[0], 32);
}
void TripleDES::clear()
{
zap(m_round_key);
}
}