Source code
Revision control
Copy as Markdown
Other Tools
# Copyright (c) 2013 The Chromium Authors. All rights reserved.
# Use of this source code is governed by a BSD-style license that can be
# found in the LICENSE file.
import("//chromium/build/config/clang/clang.gni")
import("//chromium/build/config/compiler/compiler.gni")
import("//chromium/build/config/rust.gni")
import("//chromium/build/config/sanitizers/sanitizers.gni")
import("//chromium/build/config/win/visual_studio_version.gni")
import("//chromium/build/toolchain/cc_wrapper.gni")
import("//chromium/build/toolchain/goma.gni")
import("//chromium/build/toolchain/rbe.gni")
import("//chromium/build/toolchain/toolchain.gni")
# Should only be running on Windows.
assert(is_win)
# Setup the Visual Studio state.
#
# Its arguments are the VS path and the compiler wrapper tool. It will write
# "environment.x86" and "environment.x64" to the build directory and return a
# list to us.
# This tool will is used as a wrapper for various commands below.
tool_wrapper_path = rebase_path("tool_wrapper.py", root_build_dir)
if (use_rbe) {
goma_prefix = ""
rbe_prefix = "${rbe_bin_dir}/rewrapper -cfg=${rbe_cc_cfg_file} -exec_root=${rbe_exec_root} "
clang_prefix = rbe_prefix
} else if (use_goma) {
if (host_os == "win") {
goma_prefix = "$goma_dir/gomacc.exe "
} else {
goma_prefix = "$goma_dir/gomacc "
}
clang_prefix = goma_prefix
} else {
goma_prefix = ""
if (cc_wrapper != "") {
clang_prefix = cc_wrapper + " "
} else {
clang_prefix = ""
}
}
# Copy the VS runtime DLL for the default toolchain to the root build directory
# so things will run.
if (current_toolchain == default_toolchain) {
if (is_debug) {
configuration_name = "Debug"
} else {
configuration_name = "Release"
}
exec_script("../../vs_toolchain.py",
[
"copy_dlls",
rebase_path(root_build_dir),
configuration_name,
target_cpu,
])
}
if (host_os == "win") {
clang_cl = "clang-cl.exe"
} else {
clang_cl = "clang-cl"
}
# Parameters:
# environment: File name of environment file.
#
# You would also define a toolchain_args variable with at least these set:
# target_cpu: target_cpu to pass as a build arg
# current_os: current_os to pass as a build arg
template("msvc_toolchain") {
toolchain(target_name) {
# When invoking this toolchain not as the default one, these args will be
# passed to the build. They are ignored when this is the default toolchain.
assert(defined(invoker.toolchain_args))
toolchain_args = {
if (defined(invoker.toolchain_args)) {
forward_variables_from(invoker.toolchain_args, "*")
}
# This value needs to be passed through unchanged.
host_toolchain = host_toolchain
}
# Make these apply to all tools below.
lib_switch = ""
lib_dir_switch = "/LIBPATH:"
# Object files go in this directory.
object_subdir = "{{target_out_dir}}/{{label_name}}"
env = invoker.environment
cl = invoker.cl
if (use_lld) {
if (host_os == "win") {
lld_link = "lld-link.exe"
} else {
lld_link = "lld-link"
}
prefix = rebase_path("$clang_base_path/bin", root_build_dir)
# lld-link includes a replacement for lib.exe that can produce thin
# archives and understands bitcode (for lto builds).
link = "$prefix/$lld_link"
if (host_os == "win") {
# Flip the slashes so that copy/paste of the commands works.
link = string_replace(link, "/", "\\")
}
lib = "$link /lib"
if (host_os != "win") {
# See comment adding --rsp-quoting to $cl above for more information.
link = "$link --rsp-quoting=posix"
}
} else {
lib = "lib.exe"
link = "link.exe"
}
# If possible, pass system includes as flags to the compiler. When that's
# not possible, load a full environment file (containing %INCLUDE% and
# %PATH%) -- e.g. 32-bit MSVS builds require %PATH% to be set and just
# passing in a list of include directories isn't enough.
if (defined(invoker.sys_include_flags)) {
env_wrapper = ""
sys_include_flags =
"${invoker.sys_include_flags} " # Note trailing space.
} else {
# clang-cl doesn't need this env hoop, so omit it there.
assert((defined(toolchain_args.is_clang) && !toolchain_args.is_clang) ||
!is_clang)
env_wrapper = "ninja -t msvc -e $env -- " # Note trailing space.
sys_include_flags = ""
}
# ninja does not have -t msvc other than windows, and lld doesn't depend on
# mt.exe in PATH on non-Windows, so it's not needed there anyways.
if (host_os != "win") {
linker_wrapper = ""
sys_lib_flags = "${invoker.sys_lib_flags} " # Note trailing space.
} else if (defined(invoker.sys_lib_flags)) {
# Invoke ninja as wrapper instead of tool wrapper, because python
# invocation requires higher cpu usage compared to ninja invocation, and
# the python wrapper is only needed to work around link.exe problems.
# TODO(thakis): Remove wrapper once lld-link can merge manifests without
linker_wrapper = "ninja -t msvc -e $env -- " # Note trailing space.
sys_lib_flags = "${invoker.sys_lib_flags} " # Note trailing space.
} else {
# Note trailing space:
linker_wrapper =
"$python_path $tool_wrapper_path link-wrapper $env False "
sys_lib_flags = ""
}
if (defined(toolchain_args.use_clang_coverage)) {
toolchain_use_clang_coverage = toolchain_args.use_clang_coverage
} else {
toolchain_use_clang_coverage = use_clang_coverage
}
if (toolchain_use_clang_coverage) {
assert(toolchain_args.is_clang,
"use_clang_coverage should only be used with Clang")
if (defined(toolchain_args.coverage_instrumentation_input_file)) {
toolchain_coverage_instrumentation_input_file =
toolchain_args.coverage_instrumentation_input_file
} else {
toolchain_coverage_instrumentation_input_file =
coverage_instrumentation_input_file
}
coverage_wrapper =
rebase_path("//chromium/build/toolchain/clang_code_coverage_wrapper.py",
root_build_dir)
coverage_wrapper = coverage_wrapper + " --target-os=" + target_os
if (toolchain_coverage_instrumentation_input_file != "") {
coverage_wrapper =
coverage_wrapper + " --files-to-instrument=" +
rebase_path(toolchain_coverage_instrumentation_input_file,
root_build_dir)
}
coverage_wrapper = "$python_path " + coverage_wrapper + " "
} else {
coverage_wrapper = ""
}
if (toolchain_args.is_clang && cc_wrapper == "") {
# This flag omits system includes from /showIncludes output, to reduce the
# amount of data to parse and store in .ninja_deps. We do this on non-Windows too,
# and already make sure rebuilds after win sdk / libc++ / clang header updates happen via
# changing commandline flags.
show_includes = "/showIncludes:user"
} else {
show_includes = "/showIncludes"
}
tool("cc") {
precompiled_header_type = "msvc"
pdbname = "{{target_out_dir}}/{{label_name}}_c.pdb"
# Label names may have spaces in them so the pdbname must be quoted. The
# source and output don't need to be quoted because GN knows they're a
# full file name and will quote automatically when necessary.
depsformat = "msvc"
description = "CC {{output}}"
outputs = [ "$object_subdir/{{source_name_part}}.obj" ]
# Note that the code coverage wrapper scripts assumes that {{source}}
# comes immediately after /c.
command = "$coverage_wrapper$env_wrapper$cl /c {{source}} /nologo $show_includes $sys_include_flags{{defines}} {{include_dirs}} {{cflags}} {{cflags_c}} /Fo{{output}} /Fd\"$pdbname\""
}
tool("cxx") {
precompiled_header_type = "msvc"
# The PDB name needs to be different between C and C++ compiled files.
pdbname = "{{target_out_dir}}/{{label_name}}_cc.pdb"
# See comment in CC tool about quoting.
depsformat = "msvc"
description = "CXX {{output}}"
outputs = [ "$object_subdir/{{source_name_part}}.obj" ]
# Note that the code coverage wrapper scripts assumes that {{source}}
# comes immediately after /c.
command = "$coverage_wrapper$env_wrapper$cl /c {{source}} /Fo{{output}} /nologo $show_includes $sys_include_flags{{defines}} {{include_dirs}} {{cflags}} {{cflags_cc}} /Fd\"$pdbname\""
}
tool("rc") {
command = "$python_path $tool_wrapper_path rc-wrapper $env rc.exe /nologo $sys_include_flags{{defines}} {{include_dirs}} /fo{{output}} {{source}}"
depsformat = "msvc"
outputs = [ "$object_subdir/{{source_name_part}}.res" ]
description = "RC {{output}}"
}
tool("asm") {
is_msvc_assembler = true
if (toolchain_args.target_cpu == "arm64") {
if (is_clang) {
prefix = rebase_path("$clang_base_path/bin", root_build_dir)
ml = "${clang_prefix}${prefix}/${clang_cl} --target=arm64-windows"
if (host_os == "win") {
# Flip the slashes so that copy/paste of the command works.
ml = string_replace(ml, "/", "\\")
}
ml += " -c -o{{output}}"
is_msvc_assembler = false
} else {
# Only affects Arm builds with is_clang = false, implemented for building
# V8 for Windows on Arm systems with the MSVC toolchain.
ml = "armasm64.exe"
}
} else {
# x86/x64 builds always use the MSVC assembler.
if (toolchain_args.target_cpu == "x64") {
ml = "ml64.exe"
} else {
ml = "ml.exe"
}
}
if (is_msvc_assembler) {
ml += " /nologo /Fo{{output}}"
# Suppress final-stage linking on x64/x86 builds. (Armasm64 does not
# require /c because it doesn't support linking.)
if (toolchain_args.target_cpu != "arm64") {
ml += " /c"
}
if (use_lld) {
# Wrap ml(64).exe with a script that makes its output deterministic.
# It's lld only because the script zaps obj Timestamp which
# link.exe /incremental looks at.
# make sure it has deterministic output (maybe with /Brepro or
# something) and remove this wrapper.
ml_py = rebase_path("ml.py", root_build_dir)
ml = "$python_path $ml_py $ml"
}
}
if (toolchain_args.target_cpu != "arm64" || is_clang) {
command = "$python_path $tool_wrapper_path asm-wrapper $env $ml {{defines}} {{include_dirs}} {{asmflags}} {{source}}"
} else {
# armasm64.exe does not support definitions passed via the command line.
# (Fortunately, they're not needed for compiling the V8 snapshot, which
# is the only time this assembler is required.)
command = "$python_path $tool_wrapper_path asm-wrapper $env $ml {{include_dirs}} {{asmflags}} {{source}}"
}
description = "ASM {{output}}"
outputs = [ "$object_subdir/{{source_name_part}}.obj" ]
}
if (toolchain_has_rust) {
tool("rust_staticlib") {
rust_outfile = "{{target_out_dir}}/{{crate_name}}.lib"
depfile = "{{crate_name}}.d"
command = "${rust_prefix}/rustc $rustc_common_args --emit=dep-info={{target_out_dir}}/$depfile,link -o $rust_outfile"
description = "RUST $rust_outfile"
outputs = [ rust_outfile ]
}
tool("rust_rlib") {
rust_outfile = "{{target_out_dir}}/lib{{crate_name}}.rlib"
depfile = "{{crate_name}}.d"
command = "${rust_prefix}/rustc $rustc_common_args --emit=dep-info={{target_out_dir}}/$depfile,link -o $rust_outfile"
description = "RUST $rust_outfile"
outputs = [ rust_outfile ]
}
if (rustc_can_link) {
tool("rust_bin") {
rust_outfile = "{{root_out_dir}}/{{crate_name}}.exe"
depfile = "{{crate_name}}.d"
command = "${rust_prefix}/rustc $rustc_common_args --emit=dep-info={{target_out_dir}}/$depfile,link -o $rust_outfile"
description = "RUST $rust_outfile"
outputs = [ rust_outfile ]
}
tool("rust_cdylib") {
rust_outfile = "{{target_out_dir}}/lib{{crate_name}}.dll"
depfile = "{{crate_name}}.d"
command = "${rust_prefix}/rustc $rustc_common_args --emit=dep-info={{target_out_dir}}/$depfile,link -o $rust_outfile"
description = "RUST $rust_outfile"
outputs = [ rust_outfile ]
}
tool("rust_macro") {
rust_outfile = "{{target_out_dir}}/lib{{crate_name}}.dll"
depfile = "{{crate_name}}.d"
command = "${rust_prefix}/rustc $rustc_common_args --emit=dep-info={{target_out_dir}}/$depfile,link -o $rust_outfile"
description = "RUST $rust_outfile"
outputs = [ rust_outfile ]
}
}
}
tool("alink") {
rspfile = "{{output}}.rsp"
command = "$linker_wrapper$lib /OUT:{{output}} /nologo ${sys_lib_flags}{{arflags}} @$rspfile"
description = "LIB {{output}}"
outputs = [
# Ignore {{output_extension}} and always use .lib, there's no reason to
# allow targets to override this extension on Windows.
"{{output_dir}}/{{target_output_name}}.lib",
]
default_output_extension = ".lib"
default_output_dir = "{{target_out_dir}}"
# The use of inputs_newline is to work around a fixed per-line buffer
# size in the linker.
rspfile_content = "{{inputs_newline}}"
}
tool("solink") {
# E.g. "foo.dll":
dllname = "{{output_dir}}/{{target_output_name}}{{output_extension}}"
libname = "${dllname}.lib" # e.g. foo.dll.lib
pdbname = "${dllname}.pdb"
rspfile = "${dllname}.rsp"
pool = "//chromium/build/toolchain:link_pool($default_toolchain)"
command = "$linker_wrapper$link /OUT:$dllname /nologo ${sys_lib_flags}/IMPLIB:$libname /DLL /PDB:$pdbname @$rspfile"
default_output_extension = ".dll"
default_output_dir = "{{root_out_dir}}"
description = "LINK(DLL) {{output}}"
outputs = [
dllname,
libname,
pdbname,
]
link_output = libname
depend_output = libname
runtime_outputs = [
dllname,
pdbname,
]
# Since the above commands only updates the .lib file when it changes, ask
# Ninja to check if the timestamp actually changed to know if downstream
# dependencies should be recompiled.
restat = true
# The use of inputs_newline is to work around a fixed per-line buffer
# size in the linker.
rspfile_content =
"{{libs}} {{solibs}} {{inputs_newline}} {{ldflags}} {{rlibs}}"
}
tool("solink_module") {
# E.g. "foo.dll":
dllname = "{{output_dir}}/{{target_output_name}}{{output_extension}}"
pdbname = "${dllname}.pdb"
rspfile = "${dllname}.rsp"
pool = "//chromium/build/toolchain:link_pool($default_toolchain)"
command = "$linker_wrapper$link /OUT:$dllname /nologo ${sys_lib_flags}/DLL /PDB:$pdbname @$rspfile"
default_output_extension = ".dll"
default_output_dir = "{{root_out_dir}}"
description = "LINK_MODULE(DLL) {{output}}"
outputs = [
dllname,
pdbname,
]
runtime_outputs = outputs
# The use of inputs_newline is to work around a fixed per-line buffer
# size in the linker.
rspfile_content =
"{{libs}} {{solibs}} {{inputs_newline}} {{ldflags}} {{rlibs}}"
}
tool("link") {
exename = "{{output_dir}}/{{target_output_name}}{{output_extension}}"
pdbname = "$exename.pdb"
rspfile = "$exename.rsp"
pool = "//chromium/build/toolchain:link_pool($default_toolchain)"
command = "$linker_wrapper$link /OUT:$exename /nologo ${sys_lib_flags} /PDB:$pdbname @$rspfile"
default_output_extension = ".exe"
default_output_dir = "{{root_out_dir}}"
description = "LINK {{output}}"
outputs = [
exename,
pdbname,
]
runtime_outputs = outputs
# The use of inputs_newline is to work around a fixed per-line buffer
# size in the linker.
rspfile_content =
"{{inputs_newline}} {{libs}} {{solibs}} {{ldflags}} {{rlibs}}"
}
# These two are really entirely generic, but have to be repeated in
# each toolchain because GN doesn't allow a template to be used here.
# See //build/toolchain/toolchain.gni for details.
tool("stamp") {
command = stamp_command
description = stamp_description
pool = "//chromium/build/toolchain:action_pool($default_toolchain)"
}
tool("copy") {
command = copy_command
description = copy_description
pool = "//chromium/build/toolchain:action_pool($default_toolchain)"
}
tool("action") {
pool = "//chromium/build/toolchain:action_pool($default_toolchain)"
}
}
}
template("win_toolchains") {
assert(defined(invoker.toolchain_arch))
toolchain_arch = invoker.toolchain_arch
win_toolchain_data = exec_script("setup_toolchain.py",
[
visual_studio_path,
windows_sdk_path,
visual_studio_runtime_dirs,
"win",
toolchain_arch,
"environment." + toolchain_arch,
],
"scope")
# The toolchain using MSVC only makes sense when not doing cross builds.
# Chromium exclusively uses the win_clang_ toolchain below, but V8 and
# WebRTC still use this MSVC toolchain in some cases.
if (host_os == "win") {
msvc_toolchain(target_name) {
environment = "environment." + toolchain_arch
cl = "${goma_prefix}\"${win_toolchain_data.vc_bin_dir}/cl.exe\""
toolchain_args = {
if (defined(invoker.toolchain_args)) {
forward_variables_from(invoker.toolchain_args, "*")
}
is_clang = false
use_clang_coverage = false
current_os = "win"
target_cpu = "arm64"
}
}
}
msvc_toolchain("win_clang_" + target_name) {
environment = "environment." + toolchain_arch
prefix = rebase_path("$clang_base_path/bin", root_build_dir)
cl = "${clang_prefix}$prefix/${clang_cl}"
_clang_lib_dir =
rebase_path("$clang_base_path/lib/clang/$clang_version/lib/windows",
root_build_dir)
if (host_os == "win") {
# Flip the slashes so that copy/paste of the command works.
cl = string_replace(cl, "/", "\\")
# And to match the other -libpath flags.
_clang_lib_dir = string_replace(_clang_lib_dir, "/", "\\")
}
sys_include_flags = "${win_toolchain_data.include_flags_imsvc}"
sys_lib_flags =
"-libpath:$_clang_lib_dir ${win_toolchain_data.libpath_flags}"
toolchain_args = {
if (defined(invoker.toolchain_args)) {
forward_variables_from(invoker.toolchain_args, "*")
}
is_clang = true
current_os = "win"
target_cpu = "arm64"
}
}
}
if (target_cpu == "x86" || target_cpu == "x64") {
win_toolchains("x86") {
toolchain_arch = "x86"
}
win_toolchains("x64") {
toolchain_arch = "x64"
}
}
if (target_cpu == "arm64") {
win_toolchains("arm64") {
toolchain_arch = "arm64"
}
win_toolchains(host_cpu) {
toolchain_arch = host_cpu
}
}
# The nacl_win64 toolchain is nearly identical to the plain x64 toolchain.
# It's used solely for building nacl64.exe (//components/nacl/broker:nacl64).
# The only reason it's a separate toolchain is so that it can force
# is_component_build to false in the toolchain_args() block, because
# building nacl64.exe in component style does not work.
win_toolchains("nacl_win64") {
toolchain_arch = "x64"
toolchain_args = {
is_component_build = false
}
}
# WinUWP toolchains. Only define these when targeting them.
if (target_os == "winuwp") {
assert(target_cpu == "x64" || target_cpu == "x86" || target_cpu == "arm" ||
target_cpu == "arm64")
store_cpu_toolchain_data = exec_script("setup_toolchain.py",
[
visual_studio_path,
windows_sdk_path,
visual_studio_runtime_dirs,
target_os,
target_cpu,
"environment.store_" + target_cpu,
],
"scope")
msvc_toolchain("uwp_" + target_cpu) {
environment = "environment.store_" + target_cpu
cl = "${goma_prefix}\"${store_cpu_toolchain_data.vc_bin_dir}/cl.exe\""
toolchain_args = {
current_os = "winuwp"
target_cpu = target_cpu
is_clang = false
}
}
}