Source code

Revision control

Copy as Markdown

Other Tools

Test Info: Warnings

// META: title=test WebNN API relu operation
// META: global=window,dedicatedworker
// META: variant=?cpu
// META: variant=?gpu
// META: variant=?npu
// META: script=../resources/utils.js
// META: timeout=long
'use strict';
// Compute the rectified linear function of the input tensor.
//
// MLOperand relu(MLOperand input);
const reluTests = [
{
'name': 'relu float32 1D constant tensor',
'graph': {
'inputs': {
'reluInput': {
'data': [
79.04724884033203, 2.2503609657287598, 80.73938751220703,
63.9039192199707, 77.67340850830078, -71.0915756225586,
-82.74703216552734, -26.81442642211914, -99.16788482666016,
-35.71083450317383, 18.361658096313477, -37.36091613769531,
-52.8386116027832, -10.408374786376953, 60.6029167175293,
-13.64419937133789, -76.5425033569336, -8.132338523864746,
51.51447296142578, -51.63370132446289, -64.56800079345703,
-5.093302249908447, 15.354103088378906, 90.03858947753906
],
'descriptor': {shape: [24], dataType: 'float32'},
'constant': true
}
},
'operators': [{
'name': 'relu',
'arguments': [{'input': 'reluInput'}],
'outputs': 'reluOutput'
}],
'expectedOutputs': {
'reluOutput': {
'data': [
79.04724884033203,
2.2503609657287598,
80.73938751220703,
63.9039192199707,
77.67340850830078,
0,
0,
0,
0,
0,
18.361658096313477,
0,
0,
0,
60.6029167175293,
0,
0,
0,
51.51447296142578,
0,
0,
0,
15.354103088378906,
90.03858947753906
],
'descriptor': {shape: [24], dataType: 'float32'}
}
}
}
},
{
'name': 'relu float32 0D tensor',
'graph': {
'inputs': {
'reluInput': {
'data': [79.04724884033203],
'descriptor': {shape: [], dataType: 'float32'}
}
},
'operators': [{
'name': 'relu',
'arguments': [{'input': 'reluInput'}],
'outputs': 'reluOutput'
}],
'expectedOutputs': {
'reluOutput': {
'data': [
79.04724884033203,
],
'descriptor': {shape: [], dataType: 'float32'}
}
}
}
},
{
'name': 'relu float32 1D tensor',
'graph': {
'inputs': {
'reluInput': {
'data': [
79.04724884033203, 2.2503609657287598, 80.73938751220703,
63.9039192199707, 77.67340850830078, -71.0915756225586,
-82.74703216552734, -26.81442642211914, -99.16788482666016,
-35.71083450317383, 18.361658096313477, -37.36091613769531,
-52.8386116027832, -10.408374786376953, 60.6029167175293,
-13.64419937133789, -76.5425033569336, -8.132338523864746,
51.51447296142578, -51.63370132446289, -64.56800079345703,
-5.093302249908447, 15.354103088378906, 90.03858947753906
],
'descriptor': {shape: [24], dataType: 'float32'}
}
},
'operators': [{
'name': 'relu',
'arguments': [{'input': 'reluInput'}],
'outputs': 'reluOutput'
}],
'expectedOutputs': {
'reluOutput': {
'data': [
79.04724884033203,
2.2503609657287598,
80.73938751220703,
63.9039192199707,
77.67340850830078,
0,
0,
0,
0,
0,
18.361658096313477,
0,
0,
0,
60.6029167175293,
0,
0,
0,
51.51447296142578,
0,
0,
0,
15.354103088378906,
90.03858947753906
],
'descriptor': {shape: [24], dataType: 'float32'}
}
}
}
},
{
'name': 'relu float32 2D tensor',
'graph': {
'inputs': {
'reluInput': {
'data': [
79.04724884033203, 2.2503609657287598, 80.73938751220703,
63.9039192199707, 77.67340850830078, -71.0915756225586,
-82.74703216552734, -26.81442642211914, -99.16788482666016,
-35.71083450317383, 18.361658096313477, -37.36091613769531,
-52.8386116027832, -10.408374786376953, 60.6029167175293,
-13.64419937133789, -76.5425033569336, -8.132338523864746,
51.51447296142578, -51.63370132446289, -64.56800079345703,
-5.093302249908447, 15.354103088378906, 90.03858947753906
],
'descriptor': {shape: [4, 6], dataType: 'float32'}
}
},
'operators': [{
'name': 'relu',
'arguments': [{'input': 'reluInput'}],
'outputs': 'reluOutput'
}],
'expectedOutputs': {
'reluOutput': {
'data': [
79.04724884033203,
2.2503609657287598,
80.73938751220703,
63.9039192199707,
77.67340850830078,
0,
0,
0,
0,
0,
18.361658096313477,
0,
0,
0,
60.6029167175293,
0,
0,
0,
51.51447296142578,
0,
0,
0,
15.354103088378906,
90.03858947753906
],
'descriptor': {shape: [4, 6], dataType: 'float32'}
}
}
}
},
{
'name': 'relu float32 3D tensor',
'graph': {
'inputs': {
'reluInput': {
'data': [
79.04724884033203, 2.2503609657287598, 80.73938751220703,
63.9039192199707, 77.67340850830078, -71.0915756225586,
-82.74703216552734, -26.81442642211914, -99.16788482666016,
-35.71083450317383, 18.361658096313477, -37.36091613769531,
-52.8386116027832, -10.408374786376953, 60.6029167175293,
-13.64419937133789, -76.5425033569336, -8.132338523864746,
51.51447296142578, -51.63370132446289, -64.56800079345703,
-5.093302249908447, 15.354103088378906, 90.03858947753906
],
'descriptor': {shape: [2, 3, 4], dataType: 'float32'}
}
},
'operators': [{
'name': 'relu',
'arguments': [{'input': 'reluInput'}],
'outputs': 'reluOutput'
}],
'expectedOutputs': {
'reluOutput': {
'data': [
79.04724884033203,
2.2503609657287598,
80.73938751220703,
63.9039192199707,
77.67340850830078,
0,
0,
0,
0,
0,
18.361658096313477,
0,
0,
0,
60.6029167175293,
0,
0,
0,
51.51447296142578,
0,
0,
0,
15.354103088378906,
90.03858947753906
],
'descriptor': {shape: [2, 3, 4], dataType: 'float32'}
}
}
}
},
{
'name': 'relu float32 4D tensor',
'graph': {
'inputs': {
'reluInput': {
'data': [
79.04724884033203, 2.2503609657287598, 80.73938751220703,
63.9039192199707, 77.67340850830078, -71.0915756225586,
-82.74703216552734, -26.81442642211914, -99.16788482666016,
-35.71083450317383, 18.361658096313477, -37.36091613769531,
-52.8386116027832, -10.408374786376953, 60.6029167175293,
-13.64419937133789, -76.5425033569336, -8.132338523864746,
51.51447296142578, -51.63370132446289, -64.56800079345703,
-5.093302249908447, 15.354103088378906, 90.03858947753906
],
'descriptor': {shape: [2, 2, 2, 3], dataType: 'float32'}
}
},
'operators': [{
'name': 'relu',
'arguments': [{'input': 'reluInput'}],
'outputs': 'reluOutput'
}],
'expectedOutputs': {
'reluOutput': {
'data': [
79.04724884033203,
2.2503609657287598,
80.73938751220703,
63.9039192199707,
77.67340850830078,
0,
0,
0,
0,
0,
18.361658096313477,
0,
0,
0,
60.6029167175293,
0,
0,
0,
51.51447296142578,
0,
0,
0,
15.354103088378906,
90.03858947753906
],
'descriptor': {shape: [2, 2, 2, 3], dataType: 'float32'}
}
}
}
},
{
'name': 'relu float32 5D tensor',
'graph': {
'inputs': {
'reluInput': {
'data': [
79.04724884033203, 2.2503609657287598, 80.73938751220703,
63.9039192199707, 77.67340850830078, -71.0915756225586,
-82.74703216552734, -26.81442642211914, -99.16788482666016,
-35.71083450317383, 18.361658096313477, -37.36091613769531,
-52.8386116027832, -10.408374786376953, 60.6029167175293,
-13.64419937133789, -76.5425033569336, -8.132338523864746,
51.51447296142578, -51.63370132446289, -64.56800079345703,
-5.093302249908447, 15.354103088378906, 90.03858947753906
],
'descriptor': {shape: [2, 1, 4, 1, 3], dataType: 'float32'}
}
},
'operators': [{
'name': 'relu',
'arguments': [{'input': 'reluInput'}],
'outputs': 'reluOutput'
}],
'expectedOutputs': {
'reluOutput': {
'data': [
79.04724884033203,
2.2503609657287598,
80.73938751220703,
63.9039192199707,
77.67340850830078,
0,
0,
0,
0,
0,
18.361658096313477,
0,
0,
0,
60.6029167175293,
0,
0,
0,
51.51447296142578,
0,
0,
0,
15.354103088378906,
90.03858947753906
],
'descriptor': {shape: [2, 1, 4, 1, 3], dataType: 'float32'}
}
}
}
}
];
if (navigator.ml) {
reluTests.forEach((test) => {
webnn_conformance_test(buildAndExecuteGraph, getPrecisionTolerance, test);
});
} else {
test(() => assert_implements(navigator.ml, 'missing navigator.ml'));
}