Source code
Revision control
Copy as Markdown
Other Tools
/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
// Main header first:
#include "SVGTextFrame.h"
// Keep others in (case-insensitive) order:
#include "DOMSVGPoint.h"
#include "gfx2DGlue.h"
#include "gfxContext.h"
#include "gfxFont.h"
#include "gfxSkipChars.h"
#include "gfxTypes.h"
#include "gfxUtils.h"
#include "LookAndFeel.h"
#include "nsBidiPresUtils.h"
#include "nsBlockFrame.h"
#include "nsCaret.h"
#include "nsContentUtils.h"
#include "nsGkAtoms.h"
#include "SVGPaintServerFrame.h"
#include "nsTArray.h"
#include "nsTextFrame.h"
#include "SVGAnimatedNumberList.h"
#include "SVGContentUtils.h"
#include "SVGContextPaint.h"
#include "SVGLengthList.h"
#include "SVGNumberList.h"
#include "nsLayoutUtils.h"
#include "nsFrameSelection.h"
#include "nsStyleStructInlines.h"
#include "mozilla/CaretAssociationHint.h"
#include "mozilla/DisplaySVGItem.h"
#include "mozilla/Likely.h"
#include "mozilla/PresShell.h"
#include "mozilla/SVGObserverUtils.h"
#include "mozilla/SVGOuterSVGFrame.h"
#include "mozilla/SVGUtils.h"
#include "mozilla/dom/DOMPointBinding.h"
#include "mozilla/dom/Selection.h"
#include "mozilla/dom/SVGGeometryElement.h"
#include "mozilla/dom/SVGRect.h"
#include "mozilla/dom/SVGTextContentElementBinding.h"
#include "mozilla/dom/SVGTextPathElement.h"
#include "mozilla/dom/Text.h"
#include "mozilla/gfx/2D.h"
#include "mozilla/gfx/PatternHelpers.h"
#include <algorithm>
#include <cmath>
#include <limits>
using namespace mozilla::dom;
using namespace mozilla::dom::SVGTextContentElement_Binding;
using namespace mozilla::gfx;
using namespace mozilla::image;
namespace mozilla {
// ============================================================================
// Utility functions
/**
* Using the specified gfxSkipCharsIterator, converts an offset and length
* in original char indexes to skipped char indexes.
*
* @param aIterator The gfxSkipCharsIterator to use for the conversion.
* @param aOriginalOffset The original offset.
* @param aOriginalLength The original length.
*/
static gfxTextRun::Range ConvertOriginalToSkipped(
gfxSkipCharsIterator& aIterator, uint32_t aOriginalOffset,
uint32_t aOriginalLength) {
uint32_t start = aIterator.ConvertOriginalToSkipped(aOriginalOffset);
aIterator.AdvanceOriginal(aOriginalLength);
return gfxTextRun::Range(start, aIterator.GetSkippedOffset());
}
/**
* Converts an nsPoint from app units to user space units using the specified
* nsPresContext and returns it as a gfxPoint.
*/
static gfxPoint AppUnitsToGfxUnits(const nsPoint& aPoint,
const nsPresContext* aContext) {
return gfxPoint(aContext->AppUnitsToGfxUnits(aPoint.x),
aContext->AppUnitsToGfxUnits(aPoint.y));
}
/**
* Converts a gfxRect that is in app units to CSS pixels using the specified
* nsPresContext and returns it as a gfxRect.
*/
static gfxRect AppUnitsToFloatCSSPixels(const gfxRect& aRect,
const nsPresContext* aContext) {
return gfxRect(nsPresContext::AppUnitsToFloatCSSPixels(aRect.x),
nsPresContext::AppUnitsToFloatCSSPixels(aRect.y),
nsPresContext::AppUnitsToFloatCSSPixels(aRect.width),
nsPresContext::AppUnitsToFloatCSSPixels(aRect.height));
}
/**
* Returns whether a gfxPoint lies within a gfxRect.
*/
static bool Inside(const gfxRect& aRect, const gfxPoint& aPoint) {
return aPoint.x >= aRect.x && aPoint.x < aRect.XMost() &&
aPoint.y >= aRect.y && aPoint.y < aRect.YMost();
}
/**
* Gets the measured ascent and descent of the text in the given nsTextFrame
* in app units.
*
* @param aFrame The text frame.
* @param aAscent The ascent in app units (output).
* @param aDescent The descent in app units (output).
*/
static void GetAscentAndDescentInAppUnits(nsTextFrame* aFrame,
gfxFloat& aAscent,
gfxFloat& aDescent) {
gfxSkipCharsIterator it = aFrame->EnsureTextRun(nsTextFrame::eInflated);
gfxTextRun* textRun = aFrame->GetTextRun(nsTextFrame::eInflated);
gfxTextRun::Range range = ConvertOriginalToSkipped(
it, aFrame->GetContentOffset(), aFrame->GetContentLength());
textRun->GetLineHeightMetrics(range, aAscent, aDescent);
}
/**
* Updates an interval by intersecting it with another interval.
* The intervals are specified using a start index and a length.
*/
static void IntersectInterval(uint32_t& aStart, uint32_t& aLength,
uint32_t aStartOther, uint32_t aLengthOther) {
uint32_t aEnd = aStart + aLength;
uint32_t aEndOther = aStartOther + aLengthOther;
if (aStartOther >= aEnd || aStart >= aEndOther) {
aLength = 0;
} else {
if (aStartOther >= aStart) {
aStart = aStartOther;
}
aLength = std::min(aEnd, aEndOther) - aStart;
}
}
/**
* Intersects an interval as IntersectInterval does but by taking
* the offset and length of the other interval from a
* nsTextFrame::TrimmedOffsets object.
*/
static void TrimOffsets(uint32_t& aStart, uint32_t& aLength,
const nsTextFrame::TrimmedOffsets& aTrimmedOffsets) {
IntersectInterval(aStart, aLength, aTrimmedOffsets.mStart,
aTrimmedOffsets.mLength);
}
/**
* Returns the closest ancestor-or-self node that is not an SVG <a>
* element.
*/
static nsIContent* GetFirstNonAAncestor(nsIContent* aContent) {
while (aContent && aContent->IsSVGElement(nsGkAtoms::a)) {
aContent = aContent->GetParent();
}
return aContent;
}
/**
* Returns whether the given node is a text content element[1], taking into
* account whether it has a valid parent.
*
* For example, in:
*
* <text><a/><text/></text>
* <tspan/>
* </svg>
*
* true would be returned for the outer <text> element and the <a> element,
* and false for the inner <text> element (since a <text> is not allowed
* to be a child of another <text>) and the <tspan> element (because it
* must be inside a <text> subtree).
*
* Note that we don't support the <tref> element yet and this function
* returns false for it.
*
*/
static bool IsTextContentElement(nsIContent* aContent) {
if (aContent->IsSVGElement(nsGkAtoms::text)) {
nsIContent* parent = GetFirstNonAAncestor(aContent->GetParent());
return !parent || !IsTextContentElement(parent);
}
if (aContent->IsSVGElement(nsGkAtoms::textPath)) {
nsIContent* parent = GetFirstNonAAncestor(aContent->GetParent());
return parent && parent->IsSVGElement(nsGkAtoms::text);
}
return aContent->IsAnyOfSVGElements(nsGkAtoms::a, nsGkAtoms::tspan);
}
/**
* Returns whether the specified frame is an nsTextFrame that has some text
* content.
*/
static bool IsNonEmptyTextFrame(nsIFrame* aFrame) {
nsTextFrame* textFrame = do_QueryFrame(aFrame);
if (!textFrame) {
return false;
}
return textFrame->GetContentLength() != 0;
}
/**
* Takes an nsIFrame and if it is a text frame that has some text content,
* returns it as an nsTextFrame and its corresponding Text.
*
* @param aFrame The frame to look at.
* @param aTextFrame aFrame as an nsTextFrame (output).
* @param aTextNode The Text content of aFrame (output).
* @return true if aFrame is a non-empty text frame, false otherwise.
*/
static bool GetNonEmptyTextFrameAndNode(nsIFrame* aFrame,
nsTextFrame*& aTextFrame,
Text*& aTextNode) {
nsTextFrame* text = do_QueryFrame(aFrame);
bool isNonEmptyTextFrame = text && text->GetContentLength() != 0;
if (isNonEmptyTextFrame) {
nsIContent* content = text->GetContent();
NS_ASSERTION(content && content->IsText(),
"unexpected content type for nsTextFrame");
Text* node = content->AsText();
MOZ_ASSERT(node->TextLength() != 0,
"frame's GetContentLength() should be 0 if the text node "
"has no content");
aTextFrame = text;
aTextNode = node;
}
MOZ_ASSERT(IsNonEmptyTextFrame(aFrame) == isNonEmptyTextFrame,
"our logic should agree with IsNonEmptyTextFrame");
return isNonEmptyTextFrame;
}
/**
* Returns whether the specified atom is for one of the five
* glyph positioning attributes that can appear on SVG text
* elements -- x, y, dx, dy or rotate.
*/
static bool IsGlyphPositioningAttribute(nsAtom* aAttribute) {
return aAttribute == nsGkAtoms::x || aAttribute == nsGkAtoms::y ||
aAttribute == nsGkAtoms::dx || aAttribute == nsGkAtoms::dy ||
aAttribute == nsGkAtoms::rotate;
}
/**
* Returns the position in app units of a given baseline (using an
* SVG dominant-baseline property value) for a given nsTextFrame.
*
* @param aFrame The text frame to inspect.
* @param aTextRun The text run of aFrame.
* @param aDominantBaseline The dominant-baseline value to use.
*/
static nscoord GetBaselinePosition(nsTextFrame* aFrame, gfxTextRun* aTextRun,
StyleDominantBaseline aDominantBaseline,
float aFontSizeScaleFactor) {
WritingMode writingMode = aFrame->GetWritingMode();
gfxFloat ascent, descent;
aTextRun->GetLineHeightMetrics(ascent, descent);
auto convertIfVerticalRL = [&](gfxFloat dominantBaseline) {
return writingMode.IsVerticalRL() ? ascent + descent - dominantBaseline
: dominantBaseline;
};
switch (aDominantBaseline) {
case StyleDominantBaseline::Hanging:
return convertIfVerticalRL(ascent * 0.2);
case StyleDominantBaseline::TextBeforeEdge:
return convertIfVerticalRL(0);
case StyleDominantBaseline::Alphabetic:
return writingMode.IsVerticalRL()
? ascent * 0.5
: aFrame->GetLogicalBaseline(writingMode);
case StyleDominantBaseline::Auto:
return convertIfVerticalRL(aFrame->GetLogicalBaseline(writingMode));
case StyleDominantBaseline::Middle:
return convertIfVerticalRL(aFrame->GetLogicalBaseline(writingMode) -
SVGContentUtils::GetFontXHeight(aFrame) / 2.0 *
AppUnitsPerCSSPixel() *
aFontSizeScaleFactor);
case StyleDominantBaseline::TextAfterEdge:
case StyleDominantBaseline::Ideographic:
return writingMode.IsVerticalLR() ? 0 : ascent + descent;
case StyleDominantBaseline::Central:
return (ascent + descent) / 2.0;
case StyleDominantBaseline::Mathematical:
return convertIfVerticalRL(ascent / 2.0);
}
MOZ_ASSERT_UNREACHABLE("unexpected dominant-baseline value");
return convertIfVerticalRL(aFrame->GetLogicalBaseline(writingMode));
}
/**
* Truncates an array to be at most the length of another array.
*
* @param aArrayToTruncate The array to truncate.
* @param aReferenceArray The array whose length will be used to truncate
* aArrayToTruncate to.
*/
template <typename T, typename U>
static void TruncateTo(nsTArray<T>& aArrayToTruncate,
const nsTArray<U>& aReferenceArray) {
uint32_t length = aReferenceArray.Length();
if (aArrayToTruncate.Length() > length) {
aArrayToTruncate.TruncateLength(length);
}
}
/**
* Asserts that the anonymous block child of the SVGTextFrame has been
* reflowed (or does not exist). Returns null if the child has not been
* reflowed, and the frame otherwise.
*
* We check whether the kid has been reflowed and not the frame itself
* since we sometimes need to call this function during reflow, after the
* kid has been reflowed but before we have cleared the dirty bits on the
* frame itself.
*/
static SVGTextFrame* FrameIfAnonymousChildReflowed(SVGTextFrame* aFrame) {
MOZ_ASSERT(aFrame, "aFrame must not be null");
nsIFrame* kid = aFrame->PrincipalChildList().FirstChild();
if (kid->IsSubtreeDirty()) {
MOZ_ASSERT(false, "should have already reflowed the anonymous block child");
return nullptr;
}
return aFrame;
}
// FIXME(emilio): SVG is a special-case where transforms affect layout. We don't
// want that to go outside the SVG stuff (and really we should aim to remove
// that).
static float GetContextScale(SVGTextFrame* aFrame) {
if (aFrame->HasAnyStateBits(NS_FRAME_IS_NONDISPLAY)) {
// When we are non-display, we could be painted in different coordinate
// spaces, and we don't want to have to reflow for each of these. We just
// assume that the context scale is 1.0 for them all, so we don't get stuck
// with a font size scale factor based on whichever referencing frame
// happens to reflow first.
return 1.0f;
}
auto matrix = nsLayoutUtils::GetTransformToAncestor(
RelativeTo{aFrame}, RelativeTo{SVGUtils::GetOuterSVGFrame(aFrame)});
Matrix transform2D;
if (!matrix.CanDraw2D(&transform2D)) {
return 1.0f;
}
auto scales = transform2D.ScaleFactors();
return std::max(0.0f, std::max(scales.xScale, scales.yScale));
}
// ============================================================================
// Utility classes
// ----------------------------------------------------------------------------
// TextRenderedRun
/**
* A run of text within a single nsTextFrame whose glyphs can all be painted
* with a single call to nsTextFrame::PaintText. A text rendered run can
* be created for a sequence of two or more consecutive glyphs as long as:
*
* - Only the first glyph has (or none of the glyphs have) been positioned
* with SVG text positioning attributes
* - All of the glyphs have zero rotation
* - The glyphs are not on a text path
* - The glyphs correspond to content within the one nsTextFrame
*
* A TextRenderedRunIterator produces TextRenderedRuns required for painting a
* whole SVGTextFrame.
*/
struct TextRenderedRun {
using Range = gfxTextRun::Range;
/**
* Constructs a TextRenderedRun that is uninitialized except for mFrame
* being null.
*/
TextRenderedRun() : mFrame(nullptr) {}
/**
* Constructs a TextRenderedRun with all of the information required to
* paint it. See the comments documenting the member variables below
* for descriptions of the arguments.
*/
TextRenderedRun(nsTextFrame* aFrame, const gfxPoint& aPosition,
float aLengthAdjustScaleFactor, double aRotate,
float aFontSizeScaleFactor, nscoord aBaseline,
uint32_t aTextFrameContentOffset,
uint32_t aTextFrameContentLength,
uint32_t aTextElementCharIndex)
: mFrame(aFrame),
mPosition(aPosition),
mLengthAdjustScaleFactor(aLengthAdjustScaleFactor),
mRotate(static_cast<float>(aRotate)),
mFontSizeScaleFactor(aFontSizeScaleFactor),
mBaseline(aBaseline),
mTextFrameContentOffset(aTextFrameContentOffset),
mTextFrameContentLength(aTextFrameContentLength),
mTextElementCharIndex(aTextElementCharIndex) {}
/**
* Returns the text run for the text frame that this rendered run is part of.
*/
gfxTextRun* GetTextRun() const {
mFrame->EnsureTextRun(nsTextFrame::eInflated);
return mFrame->GetTextRun(nsTextFrame::eInflated);
}
/**
* Returns whether this rendered run is RTL.
*/
bool IsRightToLeft() const { return GetTextRun()->IsRightToLeft(); }
/**
* Returns whether this rendered run is vertical.
*/
bool IsVertical() const { return GetTextRun()->IsVertical(); }
/**
* Returns the transform that converts from a <text> element's user space into
* the coordinate space that rendered runs can be painted directly in.
*
* The difference between this method and
* GetTransformFromRunUserSpaceToUserSpace is that when calling in to
* nsTextFrame::PaintText, it will already take into account any left clip
* edge (that is, it doesn't just apply a visual clip to the rendered text, it
* shifts the glyphs over so that they are painted with their left edge at the
* x coordinate passed in to it). Thus we need to account for this in our
* transform.
*
*
* Assume that we have:
*
* <text x="100" y="100" rotate="0 0 1 0 0 * 1">abcdef</text>.
*
* This would result in four text rendered runs:
*
* - one for "ab"
* - one for "c"
* - one for "de"
* - one for "f"
*
* Assume now that we are painting the third TextRenderedRun. It will have
* a left clip edge that is the sum of the advances of "abc", and it will
* have a right clip edge that is the advance of "f". In
* SVGTextFrame::PaintSVG(), we pass in nsPoint() (i.e., the origin)
* as the point at which to paint the text frame, and we pass in the
* clip edge values. The nsTextFrame will paint the substring of its
* text such that the top-left corner of the "d"'s glyph cell will be at
* (0, 0) in the current coordinate system.
*
* Thus, GetTransformFromUserSpaceForPainting must return a transform from
* whatever user space the <text> element is in to a coordinate space in
* device pixels (as that's what nsTextFrame works in) where the origin is at
* the same position as our user space mPositions[i].mPosition value for
* the "d" glyph, which will be (100 + userSpaceAdvance("abc"), 100).
* The translation required to do this (ignoring the scale to get from
* user space to device pixels, and ignoring the
* (100 + userSpaceAdvance("abc"), 100) translation) is:
*
* (-leftEdge, -baseline)
*
* where baseline is the distance between the baseline of the text and the top
* edge of the nsTextFrame. We translate by -leftEdge horizontally because
* the nsTextFrame will already shift the glyphs over by that amount and start
* painting glyphs at x = 0. We translate by -baseline vertically so that
* painting the top edges of the glyphs at y = 0 will result in their
* baselines being at our desired y position.
*
*
* Now for an example with RTL text. Assume our content is now
* <text x="100" y="100" rotate="0 0 1 0 0 1">WERBEH</text>. We'd have
* the following text rendered runs:
*
* - one for "EH"
* - one for "B"
* - one for "ER"
* - one for "W"
*
* Again, we are painting the third TextRenderedRun. The left clip edge
* is the advance of the "W" and the right clip edge is the sum of the
* advances of "BEH". Our translation to get the rendered "ER" glyphs
* in the right place this time is:
*
* (-frameWidth + rightEdge, -baseline)
*
* which is equivalent to:
*
* (-(leftEdge + advance("ER")), -baseline)
*
* The reason we have to shift left additionally by the width of the run
* of glyphs we are painting is that although the nsTextFrame is RTL,
* we still supply the top-left corner to paint the frame at when calling
* nsTextFrame::PaintText, even though our user space positions for each
* glyph in mPositions specifies the origin of each glyph, which for RTL
* glyphs is at the right edge of the glyph cell.
*
*
* For any other use of an nsTextFrame in the context of a particular run
* (such as hit testing, or getting its rectangle),
* GetTransformFromRunUserSpaceToUserSpace should be used.
*
* @param aContext The context to use for unit conversions.
*/
gfxMatrix GetTransformFromUserSpaceForPainting(
nsPresContext* aContext, const nscoord aVisIStartEdge,
const nscoord aVisIEndEdge) const;
/**
* Returns the transform that converts from "run user space" to a <text>
* element's user space. Run user space is a coordinate system that has the
* same size as the <text>'s user space but rotated and translated such that
* (0,0) is the top-left of the rectangle that bounds the text.
*
* @param aContext The context to use for unit conversions.
*/
gfxMatrix GetTransformFromRunUserSpaceToUserSpace(
nsPresContext* aContext) const;
/**
* Returns the transform that converts from "run user space" to float pixels
* relative to the nsTextFrame that this rendered run is a part of.
*
* @param aContext The context to use for unit conversions.
*/
gfxMatrix GetTransformFromRunUserSpaceToFrameUserSpace(
nsPresContext* aContext) const;
/**
* Flag values used for the aFlags arguments of GetRunUserSpaceRect,
* GetFrameUserSpaceRect and GetUserSpaceRect.
*/
enum {
// Includes the fill geometry of the text in the returned rectangle.
eIncludeFill = 1,
// Includes the stroke geometry of the text in the returned rectangle.
eIncludeStroke = 2,
// Don't include any horizontal glyph overflow in the returned rectangle.
eNoHorizontalOverflow = 4
};
/**
* Returns a rectangle that bounds the fill and/or stroke of the rendered run
* in run user space.
*
* @param aContext The context to use for unit conversions.
* @param aFlags A combination of the flags above (eIncludeFill and
* eIncludeStroke) indicating what parts of the text to include in
* the rectangle.
*/
SVGBBox GetRunUserSpaceRect(nsPresContext* aContext, uint32_t aFlags) const;
/**
* Returns a rectangle that covers the fill and/or stroke of the rendered run
* in "frame user space".
*
* Frame user space is a coordinate space of the same scale as the <text>
* element's user space, but with its rotation set to the rotation of
* the glyphs within this rendered run and its origin set to the position
* such that placing the nsTextFrame there would result in the glyphs in
* this rendered run being at their correct positions.
*
* For example, say we have <text x="100 150" y="100">ab</text>. Assume
* the advance of both the "a" and the "b" is 12 user units, and the
* ascent of the text is 8 user units and its descent is 6 user units,
* and that we are not measuing the stroke of the text, so that we stay
* entirely within the glyph cells.
*
* There will be two text rendered runs, one for "a" and one for "b".
*
* The frame user space for the "a" run will have its origin at
* (100, 100 - 8) in the <text> element's user space and will have its
* axes aligned with the user space (since there is no rotate="" or
* text path involve) and with its scale the same as the user space.
* The rect returned by this method will be (0, 0, 12, 14), since the "a"
* glyph is right at the left of the nsTextFrame.
*
* The frame user space for the "b" run will have its origin at
* (150 - 12, 100 - 8), and scale/rotation the same as above. The rect
* returned by this method will be (12, 0, 12, 14), since we are
* advance("a") horizontally in to the text frame.
*
* @param aContext The context to use for unit conversions.
* @param aFlags A combination of the flags above (eIncludeFill and
* eIncludeStroke) indicating what parts of the text to include in
* the rectangle.
*/
SVGBBox GetFrameUserSpaceRect(nsPresContext* aContext, uint32_t aFlags) const;
/**
* Returns a rectangle that covers the fill and/or stroke of the rendered run
* in the <text> element's user space.
*
* @param aContext The context to use for unit conversions.
* @param aFlags A combination of the flags above indicating what parts of
* the text to include in the rectangle.
* @param aAdditionalTransform An additional transform to apply to the
* frame user space rectangle before its bounds are transformed into
* user space.
*/
SVGBBox GetUserSpaceRect(
nsPresContext* aContext, uint32_t aFlags,
const gfxMatrix* aAdditionalTransform = nullptr) const;
/**
* Gets the app unit amounts to clip from the left and right edges of
* the nsTextFrame in order to paint just this rendered run.
*
* Note that if clip edge amounts land in the middle of a glyph, the
* glyph won't be painted at all. The clip edges are thus more of
* a selection mechanism for which glyphs will be painted, rather
* than a geometric clip.
*/
void GetClipEdges(nscoord& aVisIStartEdge, nscoord& aVisIEndEdge) const;
/**
* Returns the advance width of the whole rendered run.
*/
nscoord GetAdvanceWidth() const;
/**
* Returns the index of the character into this rendered run whose
* glyph cell contains the given point, or -1 if there is no such
* character. This does not hit test against any overflow.
*
* @param aContext The context to use for unit conversions.
* @param aPoint The point in the user space of the <text> element.
*/
int32_t GetCharNumAtPosition(nsPresContext* aContext,
const gfxPoint& aPoint) const;
/**
* The text frame that this rendered run lies within.
*/
nsTextFrame* mFrame;
/**
* The point in user space that the text is positioned at.
*
* For a horizontal run:
* The x coordinate is the left edge of a LTR run of text or the right edge of
* an RTL run. The y coordinate is the baseline of the text.
* For a vertical run:
* The x coordinate is the baseline of the text.
* The y coordinate is the top edge of a LTR run, or bottom of RTL.
*/
gfxPoint mPosition;
/**
* The horizontal scale factor to apply when painting glyphs to take
* into account textLength="".
*/
float mLengthAdjustScaleFactor;
/**
* The rotation in radians in the user coordinate system that the text has.
*/
float mRotate;
/**
* The scale factor that was used to transform the text run's original font
* size into a sane range for painting and measurement.
*/
double mFontSizeScaleFactor;
/**
* The baseline in app units of this text run. The measurement is from the
* top of the text frame. (From the left edge if vertical.)
*/
nscoord mBaseline;
/**
* The offset and length in mFrame's content Text that corresponds to
* this text rendered run. These are original char indexes.
*/
uint32_t mTextFrameContentOffset;
uint32_t mTextFrameContentLength;
/**
* The character index in the whole SVG <text> element that this text rendered
* run begins at.
*/
uint32_t mTextElementCharIndex;
};
gfxMatrix TextRenderedRun::GetTransformFromUserSpaceForPainting(
nsPresContext* aContext, const nscoord aVisIStartEdge,
const nscoord aVisIEndEdge) const {
// We transform to device pixels positioned such that painting the text frame
// at (0,0) with aItem will result in the text being in the right place.
gfxMatrix m;
if (!mFrame) {
return m;
}
float cssPxPerDevPx =
nsPresContext::AppUnitsToFloatCSSPixels(aContext->AppUnitsPerDevPixel());
// Glyph position in user space.
m.PreTranslate(mPosition / cssPxPerDevPx);
// Take into account any font size scaling and scaling due to textLength="".
m.PreScale(1.0 / mFontSizeScaleFactor, 1.0 / mFontSizeScaleFactor);
// Rotation due to rotate="" or a <textPath>.
m.PreRotate(mRotate);
// Scale for textLength="" and translate to get the text frame
// to the right place.
nsPoint t;
if (IsVertical()) {
m.PreScale(1.0, mLengthAdjustScaleFactor);
t = nsPoint(-mBaseline, IsRightToLeft()
? -mFrame->GetRect().height + aVisIEndEdge
: -aVisIStartEdge);
} else {
m.PreScale(mLengthAdjustScaleFactor, 1.0);
t = nsPoint(IsRightToLeft() ? -mFrame->GetRect().width + aVisIEndEdge
: -aVisIStartEdge,
-mBaseline);
}
m.PreTranslate(AppUnitsToGfxUnits(t, aContext));
return m;
}
gfxMatrix TextRenderedRun::GetTransformFromRunUserSpaceToUserSpace(
nsPresContext* aContext) const {
gfxMatrix m;
if (!mFrame) {
return m;
}
float cssPxPerDevPx =
nsPresContext::AppUnitsToFloatCSSPixels(aContext->AppUnitsPerDevPixel());
nscoord start, end;
GetClipEdges(start, end);
// Glyph position in user space.
m.PreTranslate(mPosition);
// Rotation due to rotate="" or a <textPath>.
m.PreRotate(mRotate);
// Scale for textLength="" and translate to get the text frame
// to the right place.
nsPoint t;
if (IsVertical()) {
m.PreScale(1.0, mLengthAdjustScaleFactor);
t = nsPoint(-mBaseline,
IsRightToLeft() ? -mFrame->GetRect().height + start + end : 0);
} else {
m.PreScale(mLengthAdjustScaleFactor, 1.0);
t = nsPoint(IsRightToLeft() ? -mFrame->GetRect().width + start + end : 0,
-mBaseline);
}
m.PreTranslate(AppUnitsToGfxUnits(t, aContext) * cssPxPerDevPx /
mFontSizeScaleFactor);
return m;
}
gfxMatrix TextRenderedRun::GetTransformFromRunUserSpaceToFrameUserSpace(
nsPresContext* aContext) const {
gfxMatrix m;
if (!mFrame) {
return m;
}
nscoord start, end;
GetClipEdges(start, end);
// Translate by the horizontal distance into the text frame this
// rendered run is.
gfxFloat appPerCssPx = AppUnitsPerCSSPixel();
gfxPoint t = IsVertical() ? gfxPoint(0, start / appPerCssPx)
: gfxPoint(start / appPerCssPx, 0);
return m.PreTranslate(t);
}
SVGBBox TextRenderedRun::GetRunUserSpaceRect(nsPresContext* aContext,
uint32_t aFlags) const {
SVGBBox r;
if (!mFrame) {
return r;
}
// Determine the amount of overflow around frame's mRect.
//
// We need to call InkOverflowRectRelativeToSelf because this includes
// overflowing decorations, which the MeasureText call below does not.
nsRect self = mFrame->InkOverflowRectRelativeToSelf();
nsRect rect = mFrame->GetRect();
bool vertical = IsVertical();
nsMargin inkOverflow(
vertical ? -self.x : -self.y,
vertical ? self.YMost() - rect.height : self.XMost() - rect.width,
vertical ? self.XMost() - rect.width : self.YMost() - rect.height,
vertical ? -self.y : -self.x);
gfxSkipCharsIterator it = mFrame->EnsureTextRun(nsTextFrame::eInflated);
gfxSkipCharsIterator start = it;
gfxTextRun* textRun = mFrame->GetTextRun(nsTextFrame::eInflated);
// Get the content range for this rendered run.
Range range = ConvertOriginalToSkipped(it, mTextFrameContentOffset,
mTextFrameContentLength);
if (range.Length() == 0) {
return r;
}
// FIXME(heycam): We could create a single PropertyProvider for all
// TextRenderedRuns that correspond to the text frame, rather than recreate
// it each time here.
nsTextFrame::PropertyProvider provider(mFrame, start);
// Measure that range.
gfxTextRun::Metrics metrics = textRun->MeasureText(
range, gfxFont::LOOSE_INK_EXTENTS, nullptr, &provider);
// Make sure it includes the font-box.
gfxRect fontBox(0, -metrics.mAscent, metrics.mAdvanceWidth,
metrics.mAscent + metrics.mDescent);
metrics.mBoundingBox.UnionRect(metrics.mBoundingBox, fontBox);
// Determine the rectangle that covers the rendered run's fill,
// taking into account the measured overflow due to decorations.
nscoord baseline =
NSToCoordRoundWithClamp(metrics.mBoundingBox.y + metrics.mAscent);
gfxFloat x, width;
if (aFlags & eNoHorizontalOverflow) {
x = 0.0;
width = textRun->GetAdvanceWidth(range, &provider);
if (width < 0.0) {
x = width;
width = -width;
}
} else {
x = metrics.mBoundingBox.x;
width = metrics.mBoundingBox.width;
}
nsRect fillInAppUnits(NSToCoordRoundWithClamp(x), baseline,
NSToCoordRoundWithClamp(width),
NSToCoordRoundWithClamp(metrics.mBoundingBox.height));
fillInAppUnits.Inflate(inkOverflow);
if (textRun->IsVertical()) {
// Swap line-relative textMetrics dimensions to physical coordinates.
std::swap(fillInAppUnits.x, fillInAppUnits.y);
std::swap(fillInAppUnits.width, fillInAppUnits.height);
}
// Convert the app units rectangle to user units.
gfxRect fill = AppUnitsToFloatCSSPixels(
gfxRect(fillInAppUnits.x, fillInAppUnits.y, fillInAppUnits.width,
fillInAppUnits.height),
aContext);
// Scale the rectangle up due to any mFontSizeScaleFactor.
fill.Scale(1.0 / mFontSizeScaleFactor);
// Include the fill if requested.
if (aFlags & eIncludeFill) {
r = fill;
}
// Include the stroke if requested.
if ((aFlags & eIncludeStroke) && !fill.IsEmpty() &&
SVGUtils::GetStrokeWidth(mFrame) > 0) {
r.UnionEdges(
SVGUtils::PathExtentsToMaxStrokeExtents(fill, mFrame, gfxMatrix()));
}
return r;
}
SVGBBox TextRenderedRun::GetFrameUserSpaceRect(nsPresContext* aContext,
uint32_t aFlags) const {
SVGBBox r = GetRunUserSpaceRect(aContext, aFlags);
if (r.IsEmpty()) {
return r;
}
gfxMatrix m = GetTransformFromRunUserSpaceToFrameUserSpace(aContext);
return m.TransformBounds(r.ToThebesRect());
}
SVGBBox TextRenderedRun::GetUserSpaceRect(
nsPresContext* aContext, uint32_t aFlags,
const gfxMatrix* aAdditionalTransform) const {
SVGBBox r = GetRunUserSpaceRect(aContext, aFlags);
if (r.IsEmpty()) {
return r;
}
gfxMatrix m = GetTransformFromRunUserSpaceToUserSpace(aContext);
if (aAdditionalTransform) {
m *= *aAdditionalTransform;
}
return m.TransformBounds(r.ToThebesRect());
}
void TextRenderedRun::GetClipEdges(nscoord& aVisIStartEdge,
nscoord& aVisIEndEdge) const {
uint32_t contentLength = mFrame->GetContentLength();
if (mTextFrameContentOffset == 0 &&
mTextFrameContentLength == contentLength) {
// If the rendered run covers the entire content, we know we don't need
// to clip without having to measure anything.
aVisIStartEdge = 0;
aVisIEndEdge = 0;
return;
}
gfxSkipCharsIterator it = mFrame->EnsureTextRun(nsTextFrame::eInflated);
gfxTextRun* textRun = mFrame->GetTextRun(nsTextFrame::eInflated);
nsTextFrame::PropertyProvider provider(mFrame, it);
// Get the covered content offset/length for this rendered run in skipped
// characters, since that is what GetAdvanceWidth expects.
Range runRange = ConvertOriginalToSkipped(it, mTextFrameContentOffset,
mTextFrameContentLength);
// Get the offset/length of the whole nsTextFrame.
uint32_t frameOffset = mFrame->GetContentOffset();
uint32_t frameLength = mFrame->GetContentLength();
// Trim the whole-nsTextFrame offset/length to remove any leading/trailing
// white space, as the nsTextFrame when painting does not include them when
// interpreting clip edges.
nsTextFrame::TrimmedOffsets trimmedOffsets =
mFrame->GetTrimmedOffsets(mFrame->TextFragment());
TrimOffsets(frameOffset, frameLength, trimmedOffsets);
// Convert the trimmed whole-nsTextFrame offset/length into skipped
// characters.
Range frameRange = ConvertOriginalToSkipped(it, frameOffset, frameLength);
// Measure the advance width in the text run between the start of
// frame's content and the start of the rendered run's content,
nscoord startEdge = textRun->GetAdvanceWidth(
Range(frameRange.start, runRange.start), &provider);
// and between the end of the rendered run's content and the end
// of the frame's content.
nscoord endEdge =
textRun->GetAdvanceWidth(Range(runRange.end, frameRange.end), &provider);
if (textRun->IsRightToLeft()) {
aVisIStartEdge = endEdge;
aVisIEndEdge = startEdge;
} else {
aVisIStartEdge = startEdge;
aVisIEndEdge = endEdge;
}
}
nscoord TextRenderedRun::GetAdvanceWidth() const {
gfxSkipCharsIterator it = mFrame->EnsureTextRun(nsTextFrame::eInflated);
gfxTextRun* textRun = mFrame->GetTextRun(nsTextFrame::eInflated);
nsTextFrame::PropertyProvider provider(mFrame, it);
Range range = ConvertOriginalToSkipped(it, mTextFrameContentOffset,
mTextFrameContentLength);
return textRun->GetAdvanceWidth(range, &provider);
}
int32_t TextRenderedRun::GetCharNumAtPosition(nsPresContext* aContext,
const gfxPoint& aPoint) const {
if (mTextFrameContentLength == 0) {
return -1;
}
float cssPxPerDevPx =
nsPresContext::AppUnitsToFloatCSSPixels(aContext->AppUnitsPerDevPixel());
// Convert the point from user space into run user space, and take
// into account any mFontSizeScaleFactor.
gfxMatrix m = GetTransformFromRunUserSpaceToUserSpace(aContext);
if (!m.Invert()) {
return -1;
}
gfxPoint p = m.TransformPoint(aPoint) / cssPxPerDevPx * mFontSizeScaleFactor;
// First check that the point lies vertically between the top and bottom
// edges of the text.
gfxFloat ascent, descent;
GetAscentAndDescentInAppUnits(mFrame, ascent, descent);
WritingMode writingMode = mFrame->GetWritingMode();
if (writingMode.IsVertical()) {
gfxFloat leftEdge = mFrame->GetLogicalBaseline(writingMode) -
(writingMode.IsVerticalRL() ? ascent : descent);
gfxFloat rightEdge = leftEdge + ascent + descent;
if (p.x < aContext->AppUnitsToGfxUnits(leftEdge) ||
p.x > aContext->AppUnitsToGfxUnits(rightEdge)) {
return -1;
}
} else {
gfxFloat topEdge = mFrame->GetLogicalBaseline(writingMode) - ascent;
gfxFloat bottomEdge = topEdge + ascent + descent;
if (p.y < aContext->AppUnitsToGfxUnits(topEdge) ||
p.y > aContext->AppUnitsToGfxUnits(bottomEdge)) {
return -1;
}
}
gfxSkipCharsIterator it = mFrame->EnsureTextRun(nsTextFrame::eInflated);
gfxTextRun* textRun = mFrame->GetTextRun(nsTextFrame::eInflated);
nsTextFrame::PropertyProvider provider(mFrame, it);
// Next check that the point lies horizontally within the left and right
// edges of the text.
Range range = ConvertOriginalToSkipped(it, mTextFrameContentOffset,
mTextFrameContentLength);
gfxFloat runAdvance =
aContext->AppUnitsToGfxUnits(textRun->GetAdvanceWidth(range, &provider));
gfxFloat pos = writingMode.IsVertical() ? p.y : p.x;
if (pos < 0 || pos >= runAdvance) {
return -1;
}
// Finally, measure progressively smaller portions of the rendered run to
// find which glyph it lies within. This will need to change once we
// support letter-spacing and word-spacing.
bool rtl = textRun->IsRightToLeft();
for (int32_t i = mTextFrameContentLength - 1; i >= 0; i--) {
range = ConvertOriginalToSkipped(it, mTextFrameContentOffset, i);
gfxFloat advance = aContext->AppUnitsToGfxUnits(
textRun->GetAdvanceWidth(range, &provider));
if ((rtl && pos < runAdvance - advance) || (!rtl && pos >= advance)) {
return i;
}
}
return -1;
}
// ----------------------------------------------------------------------------
// TextNodeIterator
enum SubtreePosition { eBeforeSubtree, eWithinSubtree, eAfterSubtree };
/**
* An iterator class for Text that are descendants of a given node, the
* root. Nodes are iterated in document order. An optional subtree can be
* specified, in which case the iterator will track whether the current state of
* the traversal over the tree is within that subtree or is past that subtree.
*/
class TextNodeIterator {
public:
/**
* Constructs a TextNodeIterator with the specified root node and optional
* subtree.
*/
explicit TextNodeIterator(nsIContent* aRoot, nsIContent* aSubtree = nullptr)
: mRoot(aRoot),
mSubtree(aSubtree == aRoot ? nullptr : aSubtree),
mCurrent(aRoot),
mSubtreePosition(mSubtree ? eBeforeSubtree : eWithinSubtree) {
NS_ASSERTION(aRoot, "expected non-null root");
if (!aRoot->IsText()) {
Next();
}
}
/**
* Returns the current Text, or null if the iterator has finished.
*/
Text* Current() const { return mCurrent ? mCurrent->AsText() : nullptr; }
/**
* Advances to the next Text and returns it, or null if the end of
* iteration has been reached.
*/
Text* Next();
/**
* Returns whether the iterator is currently within the subtree rooted
* at mSubtree. Returns true if we are not tracking a subtree (we consider
* that we're always within the subtree).
*/
bool IsWithinSubtree() const { return mSubtreePosition == eWithinSubtree; }
/**
* Returns whether the iterator is past the subtree rooted at mSubtree.
* Returns false if we are not tracking a subtree.
*/
bool IsAfterSubtree() const { return mSubtreePosition == eAfterSubtree; }
private:
/**
* The root under which all Text will be iterated over.
*/
nsIContent* const mRoot;
/**
* The node rooting the subtree to track.
*/
nsIContent* const mSubtree;
/**
* The current node during iteration.
*/
nsIContent* mCurrent;
/**
* The current iterator position relative to mSubtree.
*/
SubtreePosition mSubtreePosition;
};
Text* TextNodeIterator::Next() {
// Starting from mCurrent, we do a non-recursive traversal to the next
// Text beneath mRoot, updating mSubtreePosition appropriately if we
// encounter mSubtree.
if (mCurrent) {
do {
nsIContent* next =
IsTextContentElement(mCurrent) ? mCurrent->GetFirstChild() : nullptr;
if (next) {
mCurrent = next;
if (mCurrent == mSubtree) {
mSubtreePosition = eWithinSubtree;
}
} else {
for (;;) {
if (mCurrent == mRoot) {
mCurrent = nullptr;
break;
}
if (mCurrent == mSubtree) {
mSubtreePosition = eAfterSubtree;
}
next = mCurrent->GetNextSibling();
if (next) {
mCurrent = next;
if (mCurrent == mSubtree) {
mSubtreePosition = eWithinSubtree;
}
break;
}
if (mCurrent == mSubtree) {
mSubtreePosition = eAfterSubtree;
}
mCurrent = mCurrent->GetParent();
}
}
} while (mCurrent && !mCurrent->IsText());
}
return mCurrent ? mCurrent->AsText() : nullptr;
}
// ----------------------------------------------------------------------------
// TextNodeCorrespondenceRecorder
/**
* TextNodeCorrespondence is used as the value of a frame property that
* is stored on all its descendant nsTextFrames. It stores the number of DOM
* characters between it and the previous nsTextFrame that did not have an
* nsTextFrame created for them, due to either not being in a correctly
* parented text content element, or because they were display:none.
* These are called "undisplayed characters".
*
* See also TextNodeCorrespondenceRecorder below, which is what sets the
* frame property.
*/
struct TextNodeCorrespondence {
explicit TextNodeCorrespondence(uint32_t aUndisplayedCharacters)
: mUndisplayedCharacters(aUndisplayedCharacters) {}
uint32_t mUndisplayedCharacters;
};
NS_DECLARE_FRAME_PROPERTY_DELETABLE(TextNodeCorrespondenceProperty,
TextNodeCorrespondence)
/**
* Returns the number of undisplayed characters before the specified
* nsTextFrame.
*/
static uint32_t GetUndisplayedCharactersBeforeFrame(nsTextFrame* aFrame) {
void* value = aFrame->GetProperty(TextNodeCorrespondenceProperty());
TextNodeCorrespondence* correspondence =
static_cast<TextNodeCorrespondence*>(value);
if (!correspondence) {
NS_ERROR(
"expected a TextNodeCorrespondenceProperty on nsTextFrame "
"used for SVG text");
return 0;
}
return correspondence->mUndisplayedCharacters;
}
/**
* Traverses the nsTextFrames for an SVGTextFrame and records a
* TextNodeCorrespondenceProperty on each for the number of undisplayed DOM
* characters between each frame. This is done by iterating simultaneously
* over the Text and nsTextFrames and noting when Text (or
* parts of them) are skipped when finding the next nsTextFrame.
*/
class TextNodeCorrespondenceRecorder {
public:
/**
* Entry point for the TextNodeCorrespondenceProperty recording.
*/
static void RecordCorrespondence(SVGTextFrame* aRoot);
private:
explicit TextNodeCorrespondenceRecorder(SVGTextFrame* aRoot)
: mNodeIterator(aRoot->GetContent()),
mPreviousNode(nullptr),
mNodeCharIndex(0) {}
void Record(SVGTextFrame* aRoot);
void TraverseAndRecord(nsIFrame* aFrame);
/**
* Returns the next non-empty Text.
*/
Text* NextNode();
/**
* The iterator over the Text that we use as we simultaneously
* iterate over the nsTextFrames.
*/
TextNodeIterator mNodeIterator;
/**
* The previous Text we iterated over.
*/
Text* mPreviousNode;
/**
* The index into the current Text's character content.
*/
uint32_t mNodeCharIndex;
};
/* static */
void TextNodeCorrespondenceRecorder::RecordCorrespondence(SVGTextFrame* aRoot) {
if (aRoot->HasAnyStateBits(NS_STATE_SVG_TEXT_CORRESPONDENCE_DIRTY)) {
// Resolve bidi so that continuation frames are created if necessary:
aRoot->MaybeResolveBidiForAnonymousBlockChild();
TextNodeCorrespondenceRecorder recorder(aRoot);
recorder.Record(aRoot);
aRoot->RemoveStateBits(NS_STATE_SVG_TEXT_CORRESPONDENCE_DIRTY);
}
}
void TextNodeCorrespondenceRecorder::Record(SVGTextFrame* aRoot) {
if (!mNodeIterator.Current()) {
// If there are no Text nodes then there is nothing to do.
return;
}
// Traverse over all the nsTextFrames and record the number of undisplayed
// characters.
TraverseAndRecord(aRoot);
// Find how many undisplayed characters there are after the final nsTextFrame.
uint32_t undisplayed = 0;
if (mNodeIterator.Current()) {
if (mPreviousNode && mPreviousNode->TextLength() != mNodeCharIndex) {
// The last nsTextFrame ended part way through a Text node. The
// remaining characters count as undisplayed.
NS_ASSERTION(mNodeCharIndex < mPreviousNode->TextLength(),
"incorrect tracking of undisplayed characters in "
"text nodes");
undisplayed += mPreviousNode->TextLength() - mNodeCharIndex;
}
// All the remaining Text that we iterate must also be undisplayed.
for (Text* textNode = mNodeIterator.Current(); textNode;
textNode = NextNode()) {
undisplayed += textNode->TextLength();
}
}
// Record the trailing number of undisplayed characters on the
// SVGTextFrame.
aRoot->mTrailingUndisplayedCharacters = undisplayed;
}
Text* TextNodeCorrespondenceRecorder::NextNode() {
mPreviousNode = mNodeIterator.Current();
Text* next;
do {
next = mNodeIterator.Next();
} while (next && next->TextLength() == 0);
return next;
}
void TextNodeCorrespondenceRecorder::TraverseAndRecord(nsIFrame* aFrame) {
// Recursively iterate over the frame tree, for frames that correspond
// to text content elements.
if (IsTextContentElement(aFrame->GetContent())) {
for (nsIFrame* f : aFrame->PrincipalChildList()) {
TraverseAndRecord(f);
}
return;
}
nsTextFrame* frame; // The current text frame.
Text* node; // The text node for the current text frame.
if (!GetNonEmptyTextFrameAndNode(aFrame, frame, node)) {
// If this isn't an nsTextFrame, or is empty, nothing to do.
return;
}
NS_ASSERTION(frame->GetContentOffset() >= 0,
"don't know how to handle negative content indexes");
uint32_t undisplayed = 0;
if (!mPreviousNode) {
// Must be the very first text frame.
NS_ASSERTION(mNodeCharIndex == 0,
"incorrect tracking of undisplayed "
"characters in text nodes");
if (!mNodeIterator.Current()) {
MOZ_ASSERT_UNREACHABLE(
"incorrect tracking of correspondence between "
"text frames and text nodes");
} else {
// Each whole Text we find before we get to the text node for the
// first text frame must be undisplayed.
while (mNodeIterator.Current() != node) {
undisplayed += mNodeIterator.Current()->TextLength();
NextNode();
}
// If the first text frame starts at a non-zero content offset, then those
// earlier characters are also undisplayed.
undisplayed += frame->GetContentOffset();
NextNode();
}
} else if (mPreviousNode == node) {
// Same text node as last time.
if (static_cast<uint32_t>(frame->GetContentOffset()) != mNodeCharIndex) {
// We have some characters in the middle of the text node
// that are undisplayed.
NS_ASSERTION(
mNodeCharIndex < static_cast<uint32_t>(frame->GetContentOffset()),
"incorrect tracking of undisplayed characters in "
"text nodes");
undisplayed = frame->GetContentOffset() - mNodeCharIndex;
}
} else {
// Different text node from last time.
if (mPreviousNode->TextLength() != mNodeCharIndex) {
NS_ASSERTION(mNodeCharIndex < mPreviousNode->TextLength(),
"incorrect tracking of undisplayed characters in "
"text nodes");
// Any trailing characters at the end of the previous Text are
// undisplayed.
undisplayed = mPreviousNode->TextLength() - mNodeCharIndex;
}
// Each whole Text we find before we get to the text node for
// the current text frame must be undisplayed.
while (mNodeIterator.Current() && mNodeIterator.Current() != node) {
undisplayed += mNodeIterator.Current()->TextLength();
NextNode();
}
// If the current text frame starts at a non-zero content offset, then those
// earlier characters are also undisplayed.
undisplayed += frame->GetContentOffset();
NextNode();
}
// Set the frame property.
frame->SetProperty(TextNodeCorrespondenceProperty(),
new TextNodeCorrespondence(undisplayed));
// Remember how far into the current Text we are.
mNodeCharIndex = frame->GetContentEnd();
}
// ----------------------------------------------------------------------------
// TextFrameIterator
/**
* An iterator class for nsTextFrames that are descendants of an
* SVGTextFrame. The iterator can optionally track whether the
* current nsTextFrame is for a descendant of, or past, a given subtree
* content node or frame. (This functionality is used for example by the SVG
* DOM text methods to get only the nsTextFrames for a particular <tspan>.)
*
* TextFrameIterator also tracks and exposes other information about the
* current nsTextFrame:
*
* * how many undisplayed characters came just before it
* * its position (in app units) relative to the SVGTextFrame's anonymous
* block frame
* * what nsInlineFrame corresponding to a <textPath> element it is a
* descendant of
* * what computed dominant-baseline value applies to it
*
* Note that any text frames that are empty -- whose ContentLength() is 0 --
* will be skipped over.
*/
class MOZ_STACK_CLASS TextFrameIterator {
public:
/**
* Constructs a TextFrameIterator for the specified SVGTextFrame
* with an optional frame subtree to restrict iterated text frames to.
*/
explicit TextFrameIterator(SVGTextFrame* aRoot,
const nsIFrame* aSubtree = nullptr)
: mRootFrame(aRoot),
mSubtree(aSubtree),
mCurrentFrame(aRoot),
mSubtreePosition(mSubtree ? eBeforeSubtree : eWithinSubtree) {
Init();
}
/**
* Constructs a TextFrameIterator for the specified SVGTextFrame
* with an optional frame content subtree to restrict iterated text frames to.
*/
TextFrameIterator(SVGTextFrame* aRoot, nsIContent* aSubtree)
: mRootFrame(aRoot),
mSubtree(aRoot && aSubtree && aSubtree != aRoot->GetContent()
? aSubtree->GetPrimaryFrame()
: nullptr),
mCurrentFrame(aRoot),
mSubtreePosition(mSubtree ? eBeforeSubtree : eWithinSubtree) {
Init();
}
/**
* Returns the root SVGTextFrame this TextFrameIterator is iterating over.
*/
SVGTextFrame* Root() const { return mRootFrame; }
/**
* Returns the current nsTextFrame.
*/
nsTextFrame* Current() const { return do_QueryFrame(mCurrentFrame); }
/**
* Returns the number of undisplayed characters in the DOM just before the
* current frame.
*/
uint32_t UndisplayedCharacters() const;
/**
* Returns the current frame's position, in app units, relative to the
* root SVGTextFrame's anonymous block frame.
*/
nsPoint Position() const { return mCurrentPosition; }
/**
* Advances to the next nsTextFrame and returns it.
*/
nsTextFrame* Next();
/**
* Returns whether the iterator is within the subtree.
*/
bool IsWithinSubtree() const { return mSubtreePosition == eWithinSubtree; }
/**
* Returns whether the iterator is past the subtree.
*/
bool IsAfterSubtree() const { return mSubtreePosition == eAfterSubtree; }
/**
* Returns the frame corresponding to the <textPath> element, if we
* are inside one.
*/
nsIFrame* TextPathFrame() const {
return mTextPathFrames.IsEmpty() ? nullptr : mTextPathFrames.LastElement();
}
/**
* Returns the current frame's computed dominant-baseline value.
*/
StyleDominantBaseline DominantBaseline() const {
return mBaselines.LastElement();
}
/**
* Finishes the iterator.
*/
void Close() { mCurrentFrame = nullptr; }
private:
/**
* Initializes the iterator and advances to the first item.
*/
void Init() {
if (!mRootFrame) {
return;
}
mBaselines.AppendElement(mRootFrame->StyleSVG()->mDominantBaseline);
Next();
}
/**
* Pushes the specified frame's computed dominant-baseline value.
* If the value of the property is "auto", then the parent frame's
* computed value is used.
*/
void PushBaseline(nsIFrame* aNextFrame);
/**
* Pops the current dominant-baseline off the stack.
*/
void PopBaseline();
/**
* The root frame we are iterating through.
*/
SVGTextFrame* const mRootFrame;
/**
* The frame for the subtree we are also interested in tracking.
*/
const nsIFrame* const mSubtree;
/**
* The current value of the iterator.
*/
nsIFrame* mCurrentFrame;
/**
* The position, in app units, of the current frame relative to mRootFrame.
*/
nsPoint mCurrentPosition;
/**
* Stack of frames corresponding to <textPath> elements that are in scope
* for the current frame.
*/
AutoTArray<nsIFrame*, 1> mTextPathFrames;
/**
* Stack of dominant-baseline values to record as we traverse through the
* frame tree.
*/
AutoTArray<StyleDominantBaseline, 8> mBaselines;
/**
* The iterator's current position relative to mSubtree.
*/
SubtreePosition mSubtreePosition;
};
uint32_t TextFrameIterator::UndisplayedCharacters() const {
MOZ_ASSERT(
!mRootFrame->HasAnyStateBits(NS_STATE_SVG_TEXT_CORRESPONDENCE_DIRTY),
"Text correspondence must be up to date");
if (!mCurrentFrame) {
return mRootFrame->mTrailingUndisplayedCharacters;
}
nsTextFrame* frame = do_QueryFrame(mCurrentFrame);
return GetUndisplayedCharactersBeforeFrame(frame);
}
nsTextFrame* TextFrameIterator::Next() {
// Starting from mCurrentFrame, we do a non-recursive traversal to the next
// nsTextFrame beneath mRoot, updating mSubtreePosition appropriately if we
// encounter mSubtree.
if (mCurrentFrame) {
do {
nsIFrame* next = IsTextContentElement(mCurrentFrame->GetContent())
? mCurrentFrame->PrincipalChildList().FirstChild()
: nullptr;
if (next) {
// Descend into this frame, and accumulate its position.
mCurrentPosition += next->GetPosition();
if (next->GetContent()->IsSVGElement(nsGkAtoms::textPath)) {
// Record this <textPath> frame.
mTextPathFrames.AppendElement(next);
}
// Record the frame's baseline.
PushBaseline(next);
mCurrentFrame = next;
if (mCurrentFrame == mSubtree) {
// If the current frame is mSubtree, we have now moved into it.
mSubtreePosition = eWithinSubtree;
}
} else {
for (;;) {
// We want to move past the current frame.
if (mCurrentFrame == mRootFrame) {
// If we've reached the root frame, we're finished.
mCurrentFrame = nullptr;
break;
}
// Remove the current frame's position.
mCurrentPosition -= mCurrentFrame->GetPosition();
if (mCurrentFrame->GetContent()->IsSVGElement(nsGkAtoms::textPath)) {
// Pop off the <textPath> frame if this is a <textPath>.
mTextPathFrames.RemoveLastElement();
}
// Pop off the current baseline.
PopBaseline();
if (mCurrentFrame == mSubtree) {
// If this was mSubtree, we have now moved past it.
mSubtreePosition = eAfterSubtree;
}
next = mCurrentFrame->GetNextSibling();
if (next) {
// Moving to the next sibling.
mCurrentPosition += next->GetPosition();
if (next->GetContent()->IsSVGElement(nsGkAtoms::textPath)) {
// Record this <textPath> frame.
mTextPathFrames.AppendElement(next);
}
// Record the frame's baseline.
PushBaseline(next);
mCurrentFrame = next;
if (mCurrentFrame == mSubtree) {
// If the current frame is mSubtree, we have now moved into it.
mSubtreePosition = eWithinSubtree;
}
break;
}
if (mCurrentFrame == mSubtree) {
// If there is no next sibling frame, and the current frame is
// mSubtree, we have now moved past it.
mSubtreePosition = eAfterSubtree;
}
// Ascend out of this frame.
mCurrentFrame = mCurrentFrame->GetParent();
}
}
} while (mCurrentFrame && !IsNonEmptyTextFrame(mCurrentFrame));
}
return Current();
}
void TextFrameIterator::PushBaseline(nsIFrame* aNextFrame) {
StyleDominantBaseline baseline = aNextFrame->StyleSVG()->mDominantBaseline;
mBaselines.AppendElement(baseline);
}
void TextFrameIterator::PopBaseline() {
NS_ASSERTION(!mBaselines.IsEmpty(), "popped too many baselines");
mBaselines.RemoveLastElement();
}
// -----------------------------------------------------------------------------
// TextRenderedRunIterator
/**
* Iterator for TextRenderedRun objects for the SVGTextFrame.
*/
class TextRenderedRunIterator {
public:
/**
* Values for the aFilter argument of the constructor, to indicate which
* frames we should be limited to iterating TextRenderedRun objects for.
*/
enum RenderedRunFilter {
// Iterate TextRenderedRuns for all nsTextFrames.
eAllFrames,
// Iterate only TextRenderedRuns for nsTextFrames that are
// visibility:visible.
eVisibleFrames
};
/**
* Constructs a TextRenderedRunIterator with an optional frame subtree to
* restrict iterated rendered runs to.
*
* @param aSVGTextFrame The SVGTextFrame whose rendered runs to iterate
* through.
* @param aFilter Indicates whether to iterate rendered runs for non-visible
* nsTextFrames.
* @param aSubtree An optional frame subtree to restrict iterated rendered
* runs to.
*/
explicit TextRenderedRunIterator(SVGTextFrame* aSVGTextFrame,
RenderedRunFilter aFilter = eAllFrames,
const nsIFrame* aSubtree = nullptr)
: mFrameIterator(FrameIfAnonymousChildReflowed(aSVGTextFrame), aSubtree),
mFilter(aFilter),
mTextElementCharIndex(0),
mFrameStartTextElementCharIndex(0),
mFontSizeScaleFactor(aSVGTextFrame->mFontSizeScaleFactor),
mCurrent(First()) {}
/**
* Constructs a TextRenderedRunIterator with a content subtree to restrict
* iterated rendered runs to.
*
* @param aSVGTextFrame The SVGTextFrame whose rendered runs to iterate
* through.
* @param aFilter Indicates whether to iterate rendered runs for non-visible
* nsTextFrames.
* @param aSubtree A content subtree to restrict iterated rendered runs to.
*/
TextRenderedRunIterator(SVGTextFrame* aSVGTextFrame,
RenderedRunFilter aFilter, nsIContent* aSubtree)
: mFrameIterator(FrameIfAnonymousChildReflowed(aSVGTextFrame), aSubtree),
mFilter(aFilter),
mTextElementCharIndex(0),
mFrameStartTextElementCharIndex(0),
mFontSizeScaleFactor(aSVGTextFrame->mFontSizeScaleFactor),
mCurrent(First()) {}
/**
* Returns the current TextRenderedRun.
*/
TextRenderedRun Current() const { return mCurrent; }
/**
* Advances to the next TextRenderedRun and returns it.
*/
TextRenderedRun Next();
private:
/**
* Returns the root SVGTextFrame this iterator is for.
*/
SVGTextFrame* Root() const { return mFrameIterator.Root(); }
/**
* Advances to the first TextRenderedRun and returns it.
*/
TextRenderedRun First();
/**
* The frame iterator to use.
*/
TextFrameIterator mFrameIterator;
/**
* The filter indicating which TextRenderedRuns to return.
*/
RenderedRunFilter mFilter;
/**
* The character index across the entire <text> element we are currently
* up to.
*/
uint32_t mTextElementCharIndex;
/**
* The character index across the entire <text> for the start of the current
* frame.
*/
uint32_t mFrameStartTextElementCharIndex;
/**
* The font-size scale factor we used when constructing the nsTextFrames.
*/
double mFontSizeScaleFactor;
/**
* The current TextRenderedRun.
*/
TextRenderedRun mCurrent;
};
TextRenderedRun TextRenderedRunIterator::Next() {
if (!mFrameIterator.Current()) {
// If there are no more frames, then there are no more rendered runs to
// return.
mCurrent = TextRenderedRun();
return mCurrent;
}
// The values we will use to initialize the TextRenderedRun with.
nsTextFrame* frame;
gfxPoint pt;
double rotate;
nscoord baseline;
uint32_t offset, length;
uint32_t charIndex;
// We loop, because we want to skip over rendered runs that either aren't
// within our subtree of interest, because they don't match the filter,
// or because they are hidden due to having fallen off the end of a
// <textPath>.
for (;;) {
if (mFrameIterator.IsAfterSubtree()) {
mCurrent = TextRenderedRun();
return mCurrent;
}
frame = mFrameIterator.Current();
charIndex = mTextElementCharIndex;
// Find the end of the rendered run, by looking through the
// SVGTextFrame's positions array until we find one that is recorded
// as a run boundary.
uint32_t runStart,
runEnd; // XXX Replace runStart with mTextElementCharIndex.
runStart = mTextElementCharIndex;
runEnd = runStart + 1;
while (runEnd < Root()->mPositions.Length() &&
!Root()->mPositions[runEnd].mRunBoundary) {
runEnd++;
}
// Convert the global run start/end indexes into an offset/length into the
// current frame's Text.
offset =
frame->GetContentOffset() + runStart - mFrameStartTextElementCharIndex;
length = runEnd - runStart;
// If the end of the frame's content comes before the run boundary we found
// in SVGTextFrame's position array, we need to shorten the rendered run.
uint32_t contentEnd = frame->GetContentEnd();
if (offset + length > contentEnd) {
length = contentEnd - offset;
}
NS_ASSERTION(offset >= uint32_t(frame->GetContentOffset()),
"invalid offset");
NS_ASSERTION(offset + length <= contentEnd, "invalid offset or length");
// Get the frame's baseline position.
frame->EnsureTextRun(nsTextFrame::eInflated);
baseline = GetBaselinePosition(
frame, frame->GetTextRun(nsTextFrame::eInflated),
mFrameIterator.DominantBaseline(), mFontSizeScaleFactor);
// Trim the offset/length to remove any leading/trailing white space.
uint32_t untrimmedOffset = offset;
uint32_t untrimmedLength = length;
nsTextFrame::TrimmedOffsets trimmedOffsets =
frame->GetTrimmedOffsets(frame->TextFragment());
TrimOffsets(offset, length, trimmedOffsets);
charIndex += offset - untrimmedOffset;
// Get the position and rotation of the character that begins this
// rendered run.
pt = Root()->mPositions[charIndex].mPosition;
rotate = Root()->mPositions[charIndex].mAngle;
// Determine if we should skip this rendered run.
bool skip = !mFrameIterator.IsWithinSubtree() ||
Root()->mPositions[mTextElementCharIndex].mHidden;
if (mFilter == eVisibleFrames) {
skip = skip || !frame->StyleVisibility()->IsVisible();
}
// Update our global character index to move past the characters
// corresponding to this rendered run.
mTextElementCharIndex += untrimmedLength;
// If we have moved past the end of the current frame's content, we need to
// advance to the next frame.
if (offset + untrimmedLength >= contentEnd) {
mFrameIterator.Next();
mTextElementCharIndex += mFrameIterator.UndisplayedCharacters();
mFrameStartTextElementCharIndex = mTextElementCharIndex;
}
if (!mFrameIterator.Current()) {
if (skip) {
// That was the last frame, and we skipped this rendered run. So we
// have no rendered run to return.
mCurrent = TextRenderedRun();
return mCurrent;
}
break;
}
if (length && !skip) {
// Only return a rendered run if it didn't get collapsed away entirely
// (due to it being all white space) and if we don't want to skip it.
break;
}
}
mCurrent = TextRenderedRun(frame, pt, Root()->mLengthAdjustScaleFactor,
rotate, mFontSizeScaleFactor, baseline, offset,
length, charIndex);
return mCurrent;
}
TextRenderedRun TextRenderedRunIterator::First() {
if (!mFrameIterator.Current()) {
return TextRenderedRun();
}
if (Root()->mPositions.IsEmpty()) {
mFrameIterator.Close();
return TextRenderedRun();
}
// Get the character index for the start of this rendered run, by skipping
// any undisplayed characters.
mTextElementCharIndex = mFrameIterator.UndisplayedCharacters();
mFrameStartTextElementCharIndex = mTextElementCharIndex;
return Next();
}
// -----------------------------------------------------------------------------
// CharIterator
/**
* Iterator for characters within an SVGTextFrame.
*/
class MOZ_STACK_CLASS CharIterator {
using Range = gfxTextRun::Range;
public:
/**
* Values for the aFilter argument of the constructor, to indicate which
* characters we should be iterating over.
*/
enum CharacterFilter {
// Iterate over all original characters from the DOM that are within valid
// text content elements.
eOriginal,
// Iterate only over characters that are not skipped characters.
eUnskipped,
// Iterate only over characters that are addressable by the positioning
// attributes x="", y="", etc. This includes all characters after
// collapsing white space as required by the value of 'white-space'.
eAddressable,
};
/**
* Constructs a CharIterator.
*
* @param aSVGTextFrame The SVGTextFrame whose characters to iterate
* through.
* @param aFilter Indicates which characters to iterate over.
* @param aSubtree A content subtree to track whether the current character
* is within.
*/
CharIterator(SVGTextFrame* aSVGTextFrame, CharacterFilter aFilter,
nsIContent* aSubtree, bool aPostReflow = true);
/**
* Returns whether the iterator is finished.
*/
bool AtEnd() const { return !mFrameIterator.Current(); }
/**
* Advances to the next matching character. Returns true if there was a
* character to advance to, and false otherwise.
*/
bool Next();
/**
* Advances ahead aCount matching characters. Returns true if there were
* enough characters to advance past, and false otherwise.
*/
bool Next(uint32_t aCount);
/**
* Advances ahead up to aCount matching characters.
*/
void NextWithinSubtree(uint32_t aCount);
/**
* Advances to the character with the specified index. The index is in the
* space of original characters (i.e., all DOM characters under the <text>
* that are within valid text content elements).
*/
bool AdvanceToCharacter(uint32_t aTextElementCharIndex);
/**
* Advances to the first matching character after the current nsTextFrame.
*/
bool AdvancePastCurrentFrame();
/**
* Advances to the first matching character after the frames within
* the current <textPath>.
*/
bool AdvancePastCurrentTextPathFrame();
/**
* Advances to the first matching character of the subtree. Returns true
* if we successfully advance to the subtree, or if we are already within
* the subtree. Returns false if we are past the subtree.
*/
bool AdvanceToSubtree();
/**
* Returns the nsTextFrame for the current character.
*/
nsTextFrame* TextFrame() const { return mFrameIterator.Current(); }
/**
* Returns whether the iterator is within the subtree.
*/
bool IsWithinSubtree() const { return mFrameIterator.IsWithinSubtree(); }
/**
* Returns whether the iterator is past the subtree.
*/
bool IsAfterSubtree() const { return mFrameIterator.IsAfterSubtree(); }
/**
* Returns whether the current character is a skipped character.
*/
bool IsOriginalCharSkipped() const {
return mSkipCharsIterator.IsOriginalCharSkipped();
}
/**
* Returns whether the current character is the start of a cluster and
* ligature group.
*/
bool IsClusterAndLigatureGroupStart() const {
return mTextRun->IsLigatureGroupStart(
mSkipCharsIterator.GetSkippedOffset()) &&
mTextRun->IsClusterStart(mSkipCharsIterator.GetSkippedOffset());
}
/**
* Returns the glyph run for the current character.
*/
const gfxTextRun::GlyphRun& GlyphRun() const {
return *mTextRun->FindFirstGlyphRunContaining(
mSkipCharsIterator.GetSkippedOffset());
}
/**
* Returns whether the current character is trimmed away when painting,
* due to it being leading/trailing white space.
*/
bool IsOriginalCharTrimmed() const;
/**
* Returns whether the current character is unaddressable from the SVG glyph
* positioning attributes.
*/
bool IsOriginalCharUnaddressable() const {
return IsOriginalCharSkipped() || IsOriginalCharTrimmed();
}
/**
* Returns the text run for the current character.
*/
gfxTextRun* TextRun() const { return mTextRun; }
/**
* Returns the current character index.
*/
uint32_t TextElementCharIndex() const { return mTextElementCharIndex; }
/**
* Returns the character index for the start of the cluster/ligature group it
* is part of.
*/
uint32_t GlyphStartTextElementCharIndex() const {
return mGlyphStartTextElementCharIndex;
}
/**
* Gets the advance, in user units, of the current character. If the
* character is a part of ligature, then the advance returned will be
* a fraction of the ligature glyph's advance.
*
* @param aContext The context to use for unit conversions.
*/
gfxFloat GetAdvance(nsPresContext* aContext) const;
/**
* Returns the frame corresponding to the <textPath> that the current
* character is within.
*/
nsIFrame* TextPathFrame() const { return mFrameIterator.TextPathFrame(); }
#ifdef DEBUG
/**
* Returns the subtree we were constructed with.
*/
nsIContent* GetSubtree() const { return mSubtree; }
/**
* Returns the CharacterFilter mode in use.
*/
CharacterFilter Filter() const { return mFilter; }
#endif
private:
/**
* Advances to the next character without checking it against the filter.
* Returns true if there was a next character to advance to, or false
* otherwise.
*/
bool NextCharacter();
/**
* Returns whether the current character matches the filter.
*/
bool MatchesFilter() const;
/**
* If this is the start of a glyph, record it.
*/
void UpdateGlyphStartTextElementCharIndex() {
if (!IsOriginalCharSkipped() && IsClusterAndLigatureGroupStart()) {
mGlyphStartTextElementCharIndex = mTextElementCharIndex;
}
}
/**
* The filter to use.
*/
CharacterFilter mFilter;
/**
* The iterator for text frames.
*/
TextFrameIterator mFrameIterator;
#ifdef DEBUG
/**
* The subtree we were constructed with.
*/
nsIContent* const mSubtree;
#endif
/**
* A gfxSkipCharsIterator for the text frame the current character is
* a part of.
*/
gfxSkipCharsIterator mSkipCharsIterator;
// Cache for information computed by IsOriginalCharTrimmed.
mutable nsTextFrame* mFrameForTrimCheck;
mutable uint32_t mTrimmedOffset;
mutable uint32_t mTrimmedLength;
/**
* The text run the current character is a part of.
*/
gfxTextRun* mTextRun;
/**
* The current character's index.
*/
uint32_t mTextElementCharIndex;
/**
* The index of the character that starts the cluster/ligature group the
* current character is a part of.
*/
uint32_t mGlyphStartTextElementCharIndex;
/**
* The scale factor to apply to glyph advances returned by
* GetAdvance etc. to take into account textLength="".
*/
float mLengthAdjustScaleFactor;
/**
* Whether the instance of this class is being used after reflow has occurred
* or not.
*/
bool mPostReflow;
};
CharIterator::CharIterator(SVGTextFrame* aSVGTextFrame,
CharIterator::CharacterFilter aFilter,
nsIContent* aSubtree, bool aPostReflow)
: mFilter(aFilter),
mFrameIterator(aSVGTextFrame, aSubtree),
#ifdef DEBUG
mSubtree(aSubtree),
#endif
mFrameForTrimCheck(nullptr),
mTrimmedOffset(0),
mTrimmedLength(0),
mTextRun(nullptr),
mTextElementCharIndex(0),
mGlyphStartTextElementCharIndex(0),
mLengthAdjustScaleFactor(aSVGTextFrame->mLengthAdjustScaleFactor),
mPostReflow(aPostReflow) {
if (!AtEnd()) {
mSkipCharsIterator = TextFrame()->EnsureTextRun(nsTextFrame::eInflated);
mTextRun = TextFrame()->GetTextRun(nsTextFrame::eInflated);
mTextElementCharIndex = mFrameIterator.UndisplayedCharacters();
UpdateGlyphStartTextElementCharIndex();
if (!MatchesFilter()) {
Next();
}
}
}
bool CharIterator::Next() {
while (NextCharacter()) {
if (MatchesFilter()) {
return true;
}
}
return false;
}
bool CharIterator::Next(uint32_t aCount) {
if (aCount == 0 && AtEnd()) {
return false;
}
while (aCount) {
if (!Next()) {
return false;
}
aCount--;
}
return true;
}
void CharIterator::NextWithinSubtree(uint32_t aCount) {
while (IsWithinSubtree() && aCount) {
--aCount;
if (!Next()) {
return;
}
}
}
bool CharIterator::AdvanceToCharacter(uint32_t aTextElementCharIndex) {
while (mTextElementCharIndex < aTextElementCharIndex) {
if (!Next()) {
return false;
}
}
return true;
}
bool CharIterator::AdvancePastCurrentFrame() {
// XXX Can do this better than one character at a time if it matters.
nsTextFrame* currentFrame = TextFrame();
do {
if (!Next()) {
return false;
}
} while (TextFrame() == currentFrame);
return true;
}
bool CharIterator::AdvancePastCurrentTextPathFrame() {
nsIFrame* currentTextPathFrame = TextPathFrame();
NS_ASSERTION(currentTextPathFrame,
"expected AdvancePastCurrentTextPathFrame to be called only "
"within a text path frame");
do {
if (!AdvancePastCurrentFrame()) {
return false;
}
} while (TextPathFrame() == currentTextPathFrame);
return true;
}
bool CharIterator::AdvanceToSubtree() {
while (!IsWithinSubtree()) {
if (IsAfterSubtree()) {
return false;
}
if (!AdvancePastCurrentFrame()) {
return false;
}
}
return true;
}
bool CharIterator::IsOriginalCharTrimmed() const {
if (mFrameForTrimCheck != TextFrame()) {
// Since we do a lot of trim checking, we cache the trimmed offsets and
// lengths while we are in the same frame.
mFrameForTrimCheck = TextFrame();
uint32_t offset = mFrameForTrimCheck->GetContentOffset();
uint32_t length = mFrameForTrimCheck->GetContentLength();
nsTextFrame::TrimmedOffsets trim = mFrameForTrimCheck->GetTrimmedOffsets(
mFrameForTrimCheck->TextFragment(),
(mPostReflow ? nsTextFrame::TrimmedOffsetFlags::Default
: nsTextFrame::TrimmedOffsetFlags::NotPostReflow));
TrimOffsets(offset, length, trim);
mTrimmedOffset = offset;
mTrimmedLength = length;
}
// A character is trimmed if it is outside the mTrimmedOffset/mTrimmedLength
// range and it is not a significant newline character.
uint32_t index = mSkipCharsIterator.GetOriginalOffset();
return !(
(index >= mTrimmedOffset && index < mTrimmedOffset + mTrimmedLength) ||
(index >= mTrimmedOffset + mTrimmedLength &&
mFrameForTrimCheck->StyleText()->NewlineIsSignificant(
mFrameForTrimCheck) &&
mFrameForTrimCheck->TextFragment()->CharAt(index) == '\n'));
}
gfxFloat CharIterator::GetAdvance(nsPresContext* aContext) const {
float cssPxPerDevPx =
nsPresContext::AppUnitsToFloatCSSPixels(aContext->AppUnitsPerDevPixel());
gfxSkipCharsIterator start =
TextFrame()->EnsureTextRun(nsTextFrame::eInflated);
nsTextFrame::PropertyProvider provider(TextFrame(), start);
uint32_t offset = mSkipCharsIterator.GetSkippedOffset();
gfxFloat advance =
mTextRun->GetAdvanceWidth(Range(offset, offset + 1), &provider);
return aContext->AppUnitsToGfxUnits(advance) * mLengthAdjustScaleFactor *
cssPxPerDevPx;
}
bool CharIterator::NextCharacter() {
if (AtEnd()) {
return false;
}
mTextElementCharIndex++;
// Advance within the current text run.
mSkipCharsIterator.AdvanceOriginal(1);
if (mSkipCharsIterator.GetOriginalOffset() < TextFrame()->GetContentEnd()) {
// We're still within the part of the text run for the current text frame.
UpdateGlyphStartTextElementCharIndex();
return true;
}
// Advance to the next frame.
mFrameIterator.Next();
// Skip any undisplayed characters.
uint32_t undisplayed = mFrameIterator.UndisplayedCharacters();
mTextElementCharIndex += undisplayed;
if (!TextFrame()) {
// We're at the end.
mSkipCharsIterator = gfxSkipCharsIterator();
return false;
}
mSkipCharsIterator = TextFrame()->EnsureTextRun(nsTextFrame::eInflated);
mTextRun = TextFrame()->GetTextRun(nsTextFrame::eInflated);
UpdateGlyphStartTextElementCharIndex();
return true;
}
bool CharIterator::MatchesFilter() const {
switch (mFilter) {
case eOriginal:
return true;
case eUnskipped:
return !IsOriginalCharSkipped();
case eAddressable:
return !IsOriginalCharSkipped() && !IsOriginalCharUnaddressable();
}
MOZ_ASSERT_UNREACHABLE("Invalid mFilter value");
return true;
}
// -----------------------------------------------------------------------------
// SVGTextDrawPathCallbacks
/**
* Text frame draw callback class that paints the text and text decoration parts
* of an nsTextFrame using SVG painting properties, and selection backgrounds
* and decorations as they would normally.
*
* An instance of this class is passed to nsTextFrame::PaintText if painting
* cannot be done directly (e.g. if we are using an SVG pattern fill, stroking
* the text, etc.).
*/
class SVGTextDrawPathCallbacks final : public nsTextFrame::DrawPathCallbacks {
using imgDrawingParams = image::imgDrawingParams;
public:
/**
* Constructs an SVGTextDrawPathCallbacks.
*
* @param aSVGTextFrame The ancestor text frame.
* @param aContext The context to use for painting.
* @param aFrame The nsTextFrame to paint.
* @param aCanvasTM The transformation matrix to set when painting; this
* should be the FOR_OUTERSVG_TM canvas TM of the text, so that
* paint servers are painted correctly.
* @param aImgParams Whether we need to synchronously decode images.
* @param aShouldPaintSVGGlyphs Whether SVG glyphs should be painted.
*/
SVGTextDrawPathCallbacks(SVGTextFrame* aSVGTextFrame, gfxContext& aContext,
nsTextFrame* aFrame, const gfxMatrix& aCanvasTM,
imgDrawingParams& aImgParams,
bool aShouldPaintSVGGlyphs)
: DrawPathCallbacks(aShouldPaintSVGGlyphs),
mSVGTextFrame(aSVGTextFrame),
mContext(aContext),
mFrame(aFrame),
mCanvasTM(aCanvasTM),
mImgParams(aImgParams) {}
void NotifySelectionBackgroundNeedsFill(const Rect& aBackgroundRect,
nscolor aColor,
DrawTarget& aDrawTarget) override;
void PaintDecorationLine(Rect aPath, bool aPaintingShadows,
nscolor aColor) override;
void PaintSelectionDecorationLine(Rect aPath, bool aPaintingShadows,
nscolor aColor) override;
void NotifyBeforeText(bool aPaintingShadows, nscolor aColor) override;
void NotifyGlyphPathEmitted() override;
void NotifyAfterText() override;
private:
void SetupContext();
bool IsClipPathChild() const {
return mSVGTextFrame->HasAnyStateBits(NS_STATE_SVG_CLIPPATH_CHILD);
}
/**
* Paints a piece of text geometry. This is called when glyphs
* or text decorations have been emitted to the gfxContext.
*/
void HandleTextGeometry();
/**
* Sets the gfxContext paint to the appropriate color or pattern
* for filling text geometry.
*/
void MakeFillPattern(GeneralPattern* aOutPattern);
/**
* Fills and strokes a piece of text geometry, using group opacity
* if the selection style requires it.
*/
void FillAndStrokeGeometry();
/**
* Fills a piece of text geometry.
*/
void FillGeometry();
/**
* Strokes a piece of text geometry.
*/
void StrokeGeometry();
/*
* Takes a colour and modifies it to account for opacity properties.
*/
void ApplyOpacity(sRGBColor& aColor, const StyleSVGPaint& aPaint,
const StyleSVGOpacity& aOpacity) const;
SVGTextFrame* const mSVGTextFrame;
gfxContext& mContext;
nsTextFrame* const mFrame;
const gfxMatrix& mCanvasTM;
imgDrawingParams& mImgParams;
/**
* The color that we were last told from one of the path callback functions.
* This color can be the special NS_SAME_AS_FOREGROUND_COLOR,
* NS_40PERCENT_FOREGROUND_COLOR and NS_TRANSPARENT colors when we are
* painting selections or IME decorations.
*/
nscolor mColor = NS_RGBA(0, 0, 0, 0);
/**
* Whether we're painting text shadows.
*/
bool mPaintingShadows = false;
};
void SVGTextDrawPathCallbacks::NotifySelectionBackgroundNeedsFill(
const Rect& aBackgroundRect, nscolor aColor, DrawTarget& aDrawTarget) {
if (IsClipPathChild()) {
// Don't paint selection backgrounds when in a clip path.
return;
}
mColor = aColor; // currently needed by MakeFillPattern
mPaintingShadows = false;
GeneralPattern fillPattern;
MakeFillPattern(&fillPattern);
if (fillPattern.GetPattern()) {
DrawOptions drawOptions(aColor == NS_40PERCENT_FOREGROUND_COLOR ? 0.4
: 1.0);
aDrawTarget.FillRect(aBackgroundRect, fillPattern, drawOptions);
}
}
void SVGTextDrawPathCallbacks::NotifyBeforeText(bool aPaintingShadows,
nscolor aColor) {
mColor = aColor;
mPaintingShadows = aPaintingShadows;
SetupContext();
mContext.NewPath();
}
void SVGTextDrawPathCallbacks::NotifyGlyphPathEmitted() {
HandleTextGeometry();
mContext.NewPath();
}
void SVGTextDrawPathCallbacks::NotifyAfterText() { mContext.Restore(); }
void SVGTextDrawPathCallbacks::PaintDecorationLine(Rect aPath,
bool aPaintingShadows,
nscolor aColor) {
mColor = aColor;
mPaintingShadows = aPaintingShadows;
AntialiasMode aaMode =
SVGUtils::ToAntialiasMode(mFrame->StyleText()->mTextRendering);
mContext.Save();
mContext.NewPath();
mContext.SetAntialiasMode(aaMode);
mContext.Rectangle(ThebesRect(aPath));
HandleTextGeometry();
mContext.NewPath();
mContext.Restore();
}
void SVGTextDrawPathCallbacks::PaintSelectionDecorationLine(
Rect aPath, bool aPaintingShadows, nscolor aColor) {
if (IsClipPathChild()) {
// Don't paint selection decorations when in a clip path.
return;
}
mColor = aColor;
mPaintingShadows = aPaintingShadows;
mContext.Save();
mContext.NewPath();
mContext.Rectangle(ThebesRect(aPath));
FillAndStrokeGeometry();
mContext.Restore();
}
void SVGTextDrawPathCallbacks::SetupContext() {
mContext.Save();
// XXX This is copied from nsSVGGlyphFrame::Render, but cairo doesn't actually
// seem to do anything with the antialias mode. So we can perhaps remove it,
// or make SetAntialiasMode set cairo text antialiasing too.
mContext.SetAntialiasMode(
SVGUtils::ToAntialiasMode(mFrame->StyleText()->mTextRendering));
}
void SVGTextDrawPathCallbacks::HandleTextGeometry() {
if (IsClipPathChild()) {
RefPtr<Path> path = mContext.GetPath();
ColorPattern white(
DeviceColor(1.f, 1.f, 1.f, 1.f)); // for masking, so no ToDeviceColor
mContext.GetDrawTarget()->Fill(path, white);
} else {
// Normal painting.
gfxContextMatrixAutoSaveRestore saveMatrix(&mContext);
mContext.SetMatrixDouble(mCanvasTM);
FillAndStrokeGeometry();
}
}
void SVGTextDrawPathCallbacks::ApplyOpacity(
sRGBColor& aColor, const StyleSVGPaint& aPaint,
const StyleSVGOpacity& aOpacity) const {
if (aPaint.kind.tag == StyleSVGPaintKind::Tag::Color) {
aColor.a *=
sRGBColor::FromABGR(aPaint.kind.AsColor().CalcColor(*mFrame->Style()))
.a;
}
aColor.a *= SVGUtils::GetOpacity(aOpacity, /*aContextPaint*/ nullptr);
}
void SVGTextDrawPathCallbacks::MakeFillPattern(GeneralPattern* aOutPattern) {
if (mColor == NS_SAME_AS_FOREGROUND_COLOR ||
mColor == NS_40PERCENT_FOREGROUND_COLOR) {
SVGUtils::MakeFillPatternFor(mFrame, &mContext, aOutPattern, mImgParams);
return;
}
if (mColor == NS_TRANSPARENT) {
return;
}
sRGBColor color(sRGBColor::FromABGR(mColor));
if (mPaintingShadows) {
ApplyOpacity(color, mFrame->StyleSVG()->mFill,
mFrame->StyleSVG()->mFillOpacity);
}
aOutPattern->InitColorPattern(ToDeviceColor(color));
}
void SVGTextDrawPathCallbacks::FillAndStrokeGeometry() {
gfxGroupForBlendAutoSaveRestore autoGroupForBlend(&mContext);
if (mColor == NS_40PERCENT_FOREGROUND_COLOR) {
autoGroupForBlend.PushGroupForBlendBack(gfxContentType::COLOR_ALPHA, 0.4f);
}
uint32_t paintOrder = mFrame->StyleSVG()->mPaintOrder;
if (!paintOrder) {
FillGeometry();
StrokeGeometry();
} else {
while (paintOrder) {
auto component = StylePaintOrder(paintOrder & kPaintOrderMask);
switch (component) {
case StylePaintOrder::Fill:
FillGeometry();
break;
case StylePaintOrder::Stroke:
StrokeGeometry();
break;
default:
MOZ_FALLTHROUGH_ASSERT("Unknown paint-order value");
case StylePaintOrder::Markers:
case StylePaintOrder::Normal:
break;
}
paintOrder >>= kPaintOrderShift;
}
}
}
void SVGTextDrawPathCallbacks::FillGeometry() {
if (mFrame->StyleSVG()->mFill.kind.IsNone()) {
return;
}
GeneralPattern fillPattern;
MakeFillPattern(&fillPattern);
if (fillPattern.GetPattern()) {
RefPtr<Path> path = mContext.GetPath();
FillRule fillRule = SVGUtils::ToFillRule(mFrame->StyleSVG()->mFillRule);
if (fillRule != path->GetFillRule()) {
Path::SetFillRule(path, fillRule);
}
mContext.GetDrawTarget()->Fill(path, fillPattern);
}
}
void SVGTextDrawPathCallbacks::StrokeGeometry() {
// We don't paint the stroke when we are filling with a selection color.
if (!(mColor == NS_SAME_AS_FOREGROUND_COLOR ||
mColor == NS_40PERCENT_FOREGROUND_COLOR || mPaintingShadows)) {
return;
}
if (!SVGUtils::HasStroke(mFrame, /*aContextPaint*/ nullptr)) {
return;
}
GeneralPattern strokePattern;
if (mPaintingShadows) {
sRGBColor color(sRGBColor::FromABGR(mColor));
ApplyOpacity(color, mFrame->StyleSVG()->mStroke,
mFrame->StyleSVG()->mStrokeOpacity);
strokePattern.InitColorPattern(ToDeviceColor(color));
} else {
SVGUtils::MakeStrokePatternFor(mFrame, &mContext, &strokePattern,
mImgParams, /*aContextPaint*/ nullptr);
}
if (strokePattern.GetPattern()) {
SVGElement* svgOwner =
SVGElement::FromNode(mFrame->GetParent()->GetContent());
// Apply any stroke-specific transform
gfxMatrix outerSVGToUser;
if (SVGUtils::GetNonScalingStrokeTransform(mFrame, &outerSVGToUser) &&
outerSVGToUser.Invert()) {
mContext.Multiply(outerSVGToUser);
}
RefPtr<Path> path = mContext.GetPath();
SVGContentUtils::AutoStrokeOptions strokeOptions;
SVGContentUtils::GetStrokeOptions(&strokeOptions, svgOwner, mFrame->Style(),
/*aContextPaint*/ nullptr);
DrawOptions drawOptions;
drawOptions.mAntialiasMode =
SVGUtils::ToAntialiasMode(mFrame->StyleText()->mTextRendering);
mContext.GetDrawTarget()->Stroke(path, strokePattern, strokeOptions);
}
}
// ============================================================================
// SVGTextFrame
// ----------------------------------------------------------------------------
// Display list item
class DisplaySVGText final : public DisplaySVGItem {
public:
DisplaySVGText(nsDisplayListBuilder* aBuilder, SVGTextFrame* aFrame)
: DisplaySVGItem(aBuilder, aFrame) {
MOZ_COUNT_CTOR(DisplaySVGText);
}
MOZ_COUNTED_DTOR_OVERRIDE(DisplaySVGText)
NS_DISPLAY_DECL_NAME("DisplaySVGText", TYPE_SVG_TEXT)
nsDisplayItemGeometry* AllocateGeometry(
nsDisplayListBuilder* aBuilder) override {
return new nsDisplayItemGenericGeometry(this, aBuilder);
}
nsRect GetComponentAlphaBounds(
nsDisplayListBuilder* aBuilder) const override {
bool snap;
return GetBounds(aBuilder, &snap);
}
};
// ---------------------------------------------------------------------
// nsQueryFrame methods
NS_QUERYFRAME_HEAD(SVGTextFrame)
NS_QUERYFRAME_ENTRY(SVGTextFrame)
NS_QUERYFRAME_TAIL_INHERITING(SVGDisplayContainerFrame)
} // namespace mozilla
// ---------------------------------------------------------------------
// Implementation
nsIFrame* NS_NewSVGTextFrame(mozilla::PresShell* aPresShell,
mozilla::ComputedStyle* aStyle) {
return new (aPresShell)
mozilla::SVGTextFrame(aStyle, aPresShell->GetPresContext());
}
namespace mozilla {
NS_IMPL_FRAMEARENA_HELPERS(SVGTextFrame)
// ---------------------------------------------------------------------
// nsIFrame methods
void SVGTextFrame::Init(nsIContent* aContent, nsContainerFrame* aParent,
nsIFrame* aPrevInFlow) {
NS_ASSERTION(aContent->IsSVGElement(nsGkAtoms::text),
"Content is not an SVG text");
SVGDisplayContainerFrame::Init(aContent, aParent, aPrevInFlow);
AddStateBits(aParent->GetStateBits() & NS_STATE_SVG_CLIPPATH_CHILD);
mMutationObserver = new MutationObserver(this);
if (HasAnyStateBits(NS_FRAME_IS_NONDISPLAY)) {
// We're inserting a new <text> element into a non-display context.
// Ensure that we get reflowed.
ScheduleReflowSVGNonDisplayText(
IntrinsicDirty::FrameAncestorsAndDescendants);
}
}
void SVGTextFrame::BuildDisplayList(nsDisplayListBuilder* aBuilder,
const nsDisplayListSet& aLists) {
if (IsSubtreeDirty()) {
// We can sometimes be asked to paint before reflow happens and we
// have updated mPositions, etc. In this case, we just avoid
// painting.
return;
}
if (!IsVisibleForPainting() && aBuilder->IsForPainting()) {
return;
}
DisplayOutline(aBuilder, aLists);
aLists.Content()->AppendNewToTop<DisplaySVGText>(aBuilder, this);
}
void SVGTextFrame::DidSetComputedStyle(ComputedStyle* aOldComputedStyle) {
SVGDisplayContainerFrame::DidSetComputedStyle(aOldComputedStyle);
if (StyleSVGReset()->HasNonScalingStroke() &&
(!aOldComputedStyle ||
!aOldComputedStyle->StyleSVGReset()->HasNonScalingStroke())) {
SVGUtils::UpdateNonScalingStrokeStateBit(this);
}
}
nsresult SVGTextFrame::AttributeChanged(int32_t aNameSpaceID,
nsAtom* aAttribute, int32_t aModType) {
if (aNameSpaceID != kNameSpaceID_None) {
return NS_OK;
}
if (aAttribute == nsGkAtoms::transform) {
// We don't invalidate for transform changes (the layers code does that).
// Also note that SVGTransformableElement::GetAttributeChangeHint will
// return nsChangeHint_UpdateOverflow for "transform" attribute changes
// and cause DoApplyRenderingChangeToTree to make the SchedulePaint call.
if (!HasAnyStateBits(NS_FRAME_FIRST_REFLOW) && mCanvasTM &&
mCanvasTM->IsSingular()) {
// We won't have calculated the glyph positions correctly.
NotifyGlyphMetricsChange(false);
}
mCanvasTM = nullptr;
} else if (IsGlyphPositioningAttribute(aAttribute) ||
aAttribute == nsGkAtoms::textLength ||
aAttribute == nsGkAtoms::lengthAdjust) {
NotifyGlyphMetricsChange(false);
}
return NS_OK;
}
void SVGTextFrame::ReflowSVGNonDisplayText() {
MOZ_ASSERT(SVGUtils::AnyOuterSVGIsCallingReflowSVG(this),
"only call ReflowSVGNonDisplayText when an outer SVG frame is "
"under ReflowSVG");
MOZ_ASSERT(HasAnyStateBits(NS_FRAME_IS_NONDISPLAY),
"only call ReflowSVGNonDisplayText if the frame is "
"NS_FRAME_IS_NONDISPLAY");
// We had a style change, so we mark this frame as dirty so that the next
// time it is painted, we reflow the anonymous block frame.
this->MarkSubtreeDirty();
// Finally, we need to actually reflow the anonymous block frame and update
// mPositions, in case we are being reflowed immediately after a DOM
// mutation that needs frame reconstruction.
MaybeReflowAnonymousBlockChild();
UpdateGlyphPositioning();
}
void SVGTextFrame::ScheduleReflowSVGNonDisplayText(IntrinsicDirty aReason) {
MOZ_ASSERT(!SVGUtils::OuterSVGIsCallingReflowSVG(this),
"do not call ScheduleReflowSVGNonDisplayText when the outer SVG "
"frame is under ReflowSVG");
MOZ_ASSERT(!HasAnyStateBits(NS_STATE_SVG_TEXT_IN_REFLOW),
"do not call ScheduleReflowSVGNonDisplayText while reflowing the "
"anonymous block child");
// We need to find an ancestor frame that we can call FrameNeedsReflow
// on that will cause the document to be marked as needing relayout,
// and for that ancestor (or some further ancestor) to be marked as
// a root to reflow. We choose the closest ancestor frame that is not
// NS_FRAME_IS_NONDISPLAY and which is either an outer SVG frame or a
// non-SVG frame. (We don't consider displayed SVG frame ancestors other
// than SVGOuterSVGFrame, since calling FrameNeedsReflow on those other
// SVG frames would do a bunch of unnecessary work on the SVG frames up to
// the SVGOuterSVGFrame.)
nsIFrame* f = this;
while (f) {
if (!f->HasAnyStateBits(NS_FRAME_IS_NONDISPLAY)) {
if (f->IsSubtreeDirty()) {
// This is a displayed frame, so if it is already dirty, we will be
// reflowed soon anyway. No need to call FrameNeedsReflow again, then.
return;
}
if (!f->HasAnyStateBits(NS_FRAME_SVG_LAYOUT)) {
break;
}
f->AddStateBits(NS_FRAME_HAS_DIRTY_CHILDREN);
}
f = f->GetParent();
}
MOZ_ASSERT(f, "should have found an ancestor frame to reflow");
PresShell()->FrameNeedsReflow(f, aReason, NS_FRAME_IS_DIRTY);
}
NS_IMPL_ISUPPORTS(SVGTextFrame::MutationObserver, nsIMutationObserver)
void SVGTextFrame::MutationObserver::ContentAppended(
nsIContent* aFirstNewContent) {
mFrame->NotifyGlyphMetricsChange(true);
}
void SVGTextFrame::MutationObserver::ContentInserted(nsIContent* aChild) {
mFrame->NotifyGlyphMetricsChange(true);
}
void SVGTextFrame::MutationObserver::ContentWillBeRemoved(nsIContent* aChild) {
mFrame->NotifyGlyphMetricsChange(true);
}
void SVGTextFrame::MutationObserver::CharacterDataChanged(
nsIContent* aContent, const CharacterDataChangeInfo&) {
mFrame->NotifyGlyphMetricsChange(true);
}
void SVGTextFrame::MutationObserver::AttributeChanged(
Element* aElement, int32_t aNameSpaceID, nsAtom* aAttribute,
int32_t aModType, const nsAttrValue* aOldValue) {
if (!aElement->IsSVGElement()) {
return;
}
// Attribute changes on this element will be handled by
// SVGTextFrame::AttributeChanged.
if (aElement == mFrame->GetContent()) {
return;
}
mFrame->HandleAttributeChangeInDescendant(aElement, aNameSpaceID, aAttribute);
}
void SVGTextFrame::HandleAttributeChangeInDescendant(Element* aElement,
int32_t aNameSpaceID,
nsAtom* aAttribute) {
if (aElement->IsSVGElement(nsGkAtoms::textPath)) {
if (aNameSpaceID == kNameSpaceID_None &&
(aAttribute == nsGkAtoms::startOffset ||
aAttribute == nsGkAtoms::path || aAttribute == nsGkAtoms::side_)) {
NotifyGlyphMetricsChange(false);
} else if ((aNameSpaceID == kNameSpaceID_XLink ||
aNameSpaceID == kNameSpaceID_None) &&
aAttribute == nsGkAtoms::href) {
// Blow away our reference, if any
nsIFrame* childElementFrame = aElement->GetPrimaryFrame();
if (childElementFrame) {
SVGObserverUtils::RemoveTextPathObserver(childElementFrame);
NotifyGlyphMetricsChange(false);
}
}
} else {
if (aNameSpaceID == kNameSpaceID_None &&
IsGlyphPositioningAttribute(aAttribute)) {
NotifyGlyphMetricsChange(false);
}
}
}
void SVGTextFrame::FindCloserFrameForSelection(
const nsPoint& aPoint, FrameWithDistance* aCurrentBestFrame) {
if (HasAnyStateBits(NS_FRAME_IS_NONDISPLAY)) {
return;
}
UpdateGlyphPositioning();
nsPresContext* presContext = PresContext();
// Find the frame that has the closest rendered run rect to aPoint.
TextRenderedRunIterator it(this);
for (TextRenderedRun run = it.Current(); run.mFrame; run = it.Next()) {
uint32_t flags = TextRenderedRun::eIncludeFill |
TextRenderedRun::eIncludeStroke |
TextRenderedRun::eNoHorizontalOverflow;
SVGBBox userRect = run.GetUserSpaceRect(presContext, flags);
float devPxPerCSSPx = presContext->CSSPixelsToDevPixels(1.f);
userRect.Scale(devPxPerCSSPx);
if (!userRect.IsEmpty()) {
gfxMatrix m;
nsRect rect =
SVGUtils::ToCanvasBounds(userRect.ToThebesRect(), m, presContext);
if (nsLayoutUtils::PointIsCloserToRect(aPoint, rect,
aCurrentBestFrame->mXDistance,
aCurrentBestFrame->mYDistance)) {
aCurrentBestFrame->mFrame = run.mFrame;
}
}
}
}
//----------------------------------------------------------------------
// ISVGDisplayableFrame methods
void SVGTextFrame::NotifySVGChanged(uint32_t aFlags) {
MOZ_ASSERT(aFlags & (TRANSFORM_CHANGED | COORD_CONTEXT_CHANGED),
"Invalidation logic may need adjusting");
bool needNewBounds = false;
bool needGlyphMetricsUpdate = false;
if ((aFlags & COORD_CONTEXT_CHANGED) &&
HasAnyStateBits(NS_STATE_SVG_POSITIONING_MAY_USE_PERCENTAGES)) {
needGlyphMetricsUpdate = true;
}
if (aFlags & TRANSFORM_CHANGED) {
if (mCanvasTM && mCanvasTM->IsSingular()) {
// We won't have calculated the glyph positions correctly.
needNewBounds = true;
needGlyphMetricsUpdate = true;
}
mCanvasTM = nullptr;
if (StyleSVGReset()->HasNonScalingStroke()) {
// Stroke currently contributes to our mRect, and our stroke depends on
// the transform to our outer-<svg> if |vector-effect:non-scaling-stroke|.
needNewBounds = true;
}
// If the scale at which we computed our mFontSizeScaleFactor has changed by
// at least a factor of two, reflow the text. This avoids reflowing text at
// every tick of a transform animation, but ensures our glyph metrics
// do not get too far out of sync with the final font size on the screen.
const float scale = GetContextScale(this);
if (scale != mLastContextScale) {
if (mLastContextScale == 0.0f) {
needNewBounds = true;
needGlyphMetricsUpdate = true;
} else {
float change = scale / mLastContextScale;
if (change >= 2.0f || change <= 0.5f) {
needNewBounds = true;
needGlyphMetricsUpdate = true;
}
}
}
}
if (needNewBounds) {
// Ancestor changes can't affect how we render from the perspective of
// any rendering observers that we may have, so we don't need to
// invalidate them. We also don't need to invalidate ourself, since our
// changed ancestor will have invalidated its entire area, which includes
// our area.
ScheduleReflowSVG();
}
if (needGlyphMetricsUpdate) {
// If we are positioned using percentage values we need to update our
// position whenever our viewport's dimensions change. But only do this if
// we have been reflowed once, otherwise the glyph positioning will be
// wrong. (We need to wait until bidi reordering has been done.)
if (!HasAnyStateBits(NS_FRAME_FIRST_REFLOW)) {
NotifyGlyphMetricsChange(false);
}
}
}
/**
* Gets the offset into a DOM node that the specified caret is positioned at.
*/
static int32_t GetCaretOffset(nsCaret* aCaret) {
RefPtr<Selection> selection = aCaret->GetSelection();
if (!selection) {
return -1;
}
return selection->AnchorOffset();
}
/**
* Returns whether the caret should be painted for a given TextRenderedRun
* by checking whether the caret is in the range covered by the rendered run.
*
* @param aThisRun The TextRenderedRun to be painted.
* @param aCaret The caret.
*/
static bool ShouldPaintCaret(const TextRenderedRun& aThisRun, nsCaret* aCaret) {
int32_t caretOffset = GetCaretOffset(aCaret);
if (caretOffset < 0) {
return false;
}
return uint32_t(caretOffset) >= aThisRun.mTextFrameContentOffset &&
uint32_t(caretOffset) < aThisRun.mTextFrameContentOffset +
aThisRun.mTextFrameContentLength;
}
void SVGTextFrame::PaintSVG(gfxContext& aContext, const gfxMatrix& aTransform,
imgDrawingParams& aImgParams) {
DrawTarget& aDrawTarget = *aContext.GetDrawTarget();
nsIFrame* kid = PrincipalChildList().FirstChild();
if (!kid) {
return;
}
nsPresContext* presContext = PresContext();
gfxMatrix initialMatrix = aContext.CurrentMatrixDouble();
if (HasAnyStateBits(NS_FRAME_IS_NONDISPLAY)) {
// If we are in a canvas DrawWindow call that used the
// DRAWWINDOW_DO_NOT_FLUSH flag, then we may still have out
// of date frames. Just don't paint anything if they are
// dirty.
if (presContext->PresShell()->InDrawWindowNotFlushing() &&
IsSubtreeDirty()) {
return;
}
// Text frames inside <clipPath>, <mask>, etc. will never have had
// ReflowSVG called on them, so call UpdateGlyphPositioning to do this now.
UpdateGlyphPositioning();
} else if (IsSubtreeDirty()) {
// If we are asked to paint before reflow has recomputed mPositions etc.
// directly via PaintSVG, rather than via a display list, then we need
// to bail out here too.
return;
}
const float epsilon = 0.0001;
if (abs(mLengthAdjustScaleFactor) < epsilon) {
// A zero scale factor can be caused by having forced the text length to
// zero. In this situation there is nothing to show.
return;
}
if (aTransform.IsSingular()) {
NS_WARNING("Can't render text element!");
return;
}
gfxMatrix matrixForPaintServers = aTransform * initialMatrix;
// SVG frames' PaintSVG methods paint in CSS px, but normally frames paint in
// dev pixels. Here we multiply a CSS-px-to-dev-pixel factor onto aTransform
// so our non-SVG nsTextFrame children paint correctly.
auto auPerDevPx = presContext->AppUnitsPerDevPixel();
float cssPxPerDevPx = nsPresContext::AppUnitsToFloatCSSPixels(auPerDevPx);
gfxMatrix canvasTMForChildren = aTransform;
canvasTMForChildren.PreScale(cssPxPerDevPx, cssPxPerDevPx);
initialMatrix.PreScale(1 / cssPxPerDevPx, 1 / cssPxPerDevPx);
gfxContextMatrixAutoSaveRestore matSR(&aContext);
aContext.NewPath();
aContext.Multiply(canvasTMForChildren);
gfxMatrix currentMatrix = aContext.CurrentMatrixDouble();
RefPtr<nsCaret> caret = presContext->PresShell()->GetCaret();
nsRect caretRect;
nsIFrame* caretFrame = caret->GetPaintGeometry(&caretRect);
gfxContextAutoSaveRestore ctxSR;
TextRenderedRunIterator it(this, TextRenderedRunIterator::eVisibleFrames);
TextRenderedRun run = it.Current();
SVGContextPaint* outerContextPaint =
SVGContextPaint::GetContextPaint(GetContent());
while (run.mFrame) {
nsTextFrame* frame = run.mFrame;
auto contextPaint = MakeRefPtr<SVGContextPaintImpl>();
DrawMode drawMode = contextPaint->Init(&aDrawTarget, initialMatrix, frame,
outerContextPaint, aImgParams);
if (drawMode & DrawMode::GLYPH_STROKE) {
ctxSR.EnsureSaved(&aContext);
// This may change the gfxContext's transform (for non-scaling stroke),
// in which case this needs to happen before we call SetMatrix() below.
SVGUtils::SetupStrokeGeometry(frame->GetParent(), &aContext,
outerContextPaint);
}
nscoord startEdge, endEdge;
run.GetClipEdges(startEdge, endEdge);
// Set up the transform for painting the text frame for the substring
// indicated by the run.
gfxMatrix runTransform = run.GetTransformFromUserSpaceForPainting(
presContext, startEdge, endEdge) *
currentMatrix;
aContext.SetMatrixDouble(runTransform);
if (drawMode != DrawMode(0)) {
bool paintSVGGlyphs;
nsTextFrame::PaintTextParams params(&aContext);
params.framePt = Point();
params.dirtyRect =
LayoutDevicePixel::FromAppUnits(frame->InkOverflowRect(), auPerDevPx);
params.contextPaint = contextPaint;
bool isSelected;
if (HasAnyStateBits(NS_STATE_SVG_CLIPPATH_CHILD)) {
params.state = nsTextFrame::PaintTextParams::GenerateTextMask;
isSelected = false;
} else {
isSelected = frame->IsSelected();
}
gfxGroupForBlendAutoSaveRestore autoGroupForBlend(&aContext);
float opacity = 1.0f;
nsIFrame* ancestor = frame->GetParent();
while (ancestor != this) {
opacity *= ancestor->StyleEffects()->mOpacity;
ancestor = ancestor->GetParent();
}
if (opacity < 1.0f) {
autoGroupForBlend.PushGroupForBlendBack(gfxContentType::COLOR_ALPHA,
opacity);
}
if (ShouldRenderAsPath(frame, paintSVGGlyphs)) {
SVGTextDrawPathCallbacks callbacks(this, aContext, frame,
matrixForPaintServers, aImgParams,
paintSVGGlyphs);
params.callbacks = &callbacks;
frame->PaintText(params, startEdge, endEdge, nsPoint(), isSelected);
} else {
frame->PaintText(params, startEdge, endEdge, nsPoint(), isSelected);
}
}
if (frame == caretFrame && ShouldPaintCaret(run, caret)) {
// XXX Should we be looking at the fill/stroke colours to paint the
// caret with, rather than using the color property?
caret->PaintCaret(aDrawTarget, frame, nsPoint());
aContext.NewPath();
}
run = it.Next();
}
}
nsIFrame* SVGTextFrame::GetFrameForPoint(const gfxPoint& aPoint) {
NS_ASSERTION(PrincipalChildList().FirstChild(), "must have a child frame");
if (HasAnyStateBits(NS_FRAME_IS_NONDISPLAY)) {
// Text frames inside <clipPath> will never have had ReflowSVG called on
// them, so call UpdateGlyphPositioning to do this now. (Text frames
// inside <mask> and other non-display containers will never need to
// be hit tested.)
UpdateGlyphPositioning();
} else {
NS_ASSERTION(!IsSubtreeDirty(), "reflow should have happened");
}
// Hit-testing any clip-path will typically be a lot quicker than the
// hit-testing of our text frames in the loop below, so we do the former up
// front to avoid unnecessarily wasting cycles on the latter.
if (!SVGUtils::HitTestClip(this, aPoint)) {
return nullptr;
}
nsPresContext* presContext = PresContext();
// Ideally we'd iterate backwards so that we can just return the first frame
// that is under aPoint. In practice this will rarely matter though since it
// is rare for text in/under an SVG <text> element to overlap (i.e. the first
// text frame that is hit will likely be the only text frame that is hit).
TextRenderedRunIterator it(this);
nsIFrame* hit = nullptr;
for (TextRenderedRun run = it.Current(); run.mFrame; run = it.Next()) {
uint16_t hitTestFlags = SVGUtils::GetGeometryHitTestFlags(run.mFrame);
if (!hitTestFlags) {
continue;
}
gfxMatrix m = run.GetTransformFromRunUserSpaceToUserSpace(presContext);
if (!m.Invert()) {
return nullptr;
}
gfxPoint pointInRunUserSpace = m.TransformPoint(aPoint);
gfxRect frameRect = run.GetRunUserSpaceRect(
presContext, TextRenderedRun::eIncludeFill |
TextRenderedRun::eIncludeStroke)
.ToThebesRect();
if (Inside(frameRect, pointInRunUserSpace)) {
hit = run.mFrame;
}
}
return hit;
}
void SVGTextFrame::ReflowSVG() {
MOZ_ASSERT(SVGUtils::AnyOuterSVGIsCallingReflowSVG(this),
"This call is probaby a wasteful mistake");
MOZ_ASSERT(!HasAnyStateBits(NS_FRAME_IS_NONDISPLAY),
"ReflowSVG mechanism not designed for this");
if (!SVGUtils::NeedsReflowSVG(this)) {
MOZ_ASSERT(!HasAnyStateBits(NS_STATE_SVG_TEXT_CORRESPONDENCE_DIRTY |
NS_STATE_SVG_POSITIONING_DIRTY),
"How did this happen?");
return;
}
MaybeReflowAnonymousBlockChild();
UpdateGlyphPositioning();
nsPresContext* presContext = PresContext();
SVGBBox r;
TextRenderedRunIterator it(this, TextRenderedRunIterator::eAllFrames);
for (TextRenderedRun run = it.Current(); run.mFrame; run = it.Next()) {
uint32_t runFlags = 0;
if (!run.mFrame->StyleSVG()->mFill.kind.IsNone()) {
runFlags |= TextRenderedRun::eIncludeFill;
}
if (SVGUtils::HasStroke(run.mFrame)) {
runFlags |= TextRenderedRun::eIncludeStroke;
}
// Our "visual" overflow rect needs to be valid for building display lists
// for hit testing, which means that for certain values of 'pointer-events'
// it needs to include the geometry of the fill or stroke even when the
// fill/ stroke don't actually render (e.g. when stroke="none" or
// stroke-opacity="0"). GetGeometryHitTestFlags accounts for
// 'pointer-events'. The text-shadow is not part of the hit-test area.
uint16_t hitTestFlags = SVGUtils::GetGeometryHitTestFlags(run.mFrame);
if (hitTestFlags & SVG_HIT_TEST_FILL) {
runFlags |= TextRenderedRun::eIncludeFill;
}
if (hitTestFlags & SVG_HIT_TEST_STROKE) {
runFlags |= TextRenderedRun::eIncludeStroke;
}
if (runFlags) {
r.UnionEdges(run.GetUserSpaceRect(presContext, runFlags));
}
}
if (r.IsEmpty()) {
mRect.SetEmpty();
} else {
mRect = nsLayoutUtils::RoundGfxRectToAppRect(r.ToThebesRect(),
AppUnitsPerCSSPixel());
// Due to rounding issues when we have a transform applied, we sometimes
// don't include an additional row of pixels. For now, just inflate our
// covered region.
if (mLastContextScale != 0.0f) {
mRect.Inflate(
ceil(presContext->AppUnitsPerDevPixel() / mLastContextScale));
}
}
if (HasAnyStateBits(NS_FRAME_FIRST_REFLOW)) {
// Make sure we have our filter property (if any) before calling
// FinishAndStoreOverflow (subsequent filter changes are handled off
// nsChangeHint_UpdateEffects):
SVGObserverUtils::UpdateEffects(this);
}
// Now unset the various reflow bits. Do this before calling
// FinishAndStoreOverflow since FinishAndStoreOverflow can require glyph
// positions (to resolve transform-origin).
RemoveStateBits(NS_FRAME_FIRST_REFLOW | NS_FRAME_IS_DIRTY |
NS_FRAME_HAS_DIRTY_CHILDREN);
nsRect overflow = nsRect(nsPoint(0, 0), mRect.Size());
OverflowAreas overflowAreas(overflow, overflow);
FinishAndStoreOverflow(overflowAreas, mRect.Size());
}
/**
* Converts SVGUtils::eBBox* flags into TextRenderedRun flags appropriate
* for the specified rendered run.
*/
static uint32_t TextRenderedRunFlagsForBBoxContribution(
const TextRenderedRun& aRun, uint32_t aBBoxFlags) {
uint32_t flags = 0;
if ((aBBoxFlags & SVGUtils::eBBoxIncludeFillGeometry) ||
((aBBoxFlags & SVGUtils::eBBoxIncludeFill) &&
!aRun.mFrame->StyleSVG()->mFill.kind.IsNone())) {
flags |= TextRenderedRun::eIncludeFill;
}
if ((aBBoxFlags & SVGUtils::eBBoxIncludeStrokeGeometry) ||
((aBBoxFlags & SVGUtils::eBBoxIncludeStroke) &&
SVGUtils::HasStroke(aRun.mFrame))) {
flags |= TextRenderedRun::eIncludeStroke;
}
return flags;
}
SVGBBox SVGTextFrame::GetBBoxContribution(const Matrix& aToBBoxUserspace,
uint32_t aFlags) {
NS_ASSERTION(PrincipalChildList().FirstChild(), "must have a child frame");
SVGBBox bbox;
if (aFlags & SVGUtils::eForGetClientRects) {
Rect rect = NSRectToRect(mRect, AppUnitsPerCSSPixel());
if (!rect.IsEmpty()) {
bbox = aToBBoxUserspace.TransformBounds(rect);
}
return bbox;
}
nsIFrame* kid = PrincipalChildList().FirstChild();
if (kid && kid->IsSubtreeDirty()) {
// Return an empty bbox if our kid's subtree is dirty. This may be called
// in that situation, e.g. when we're building a display list after an
// interrupted reflow. This can also be called during reflow before we've
// been reflowed, e.g. if an earlier sibling is calling
// FinishAndStoreOverflow and needs our parent's perspective matrix, which
// depends on the SVG bbox contribution of this frame. In the latter
// situation, when all siblings have been reflowed, the parent will compute
// its perspective and rerun FinishAndStoreOverflow for all its children.
return bbox;
}
UpdateGlyphPositioning();
nsPresContext* presContext = PresContext();
TextRenderedRunIterator it(this);
for (TextRenderedRun run = it.Current(); run.mFrame; run = it.Next()) {
uint32_t flags = TextRenderedRunFlagsForBBoxContribution(run, aFlags);
gfxMatrix m = ThebesMatrix(aToBBoxUserspace);
SVGBBox bboxForRun = run.GetUserSpaceRect(presContext, flags, &m);
bbox.UnionEdges(bboxForRun);
}
return bbox;
}
//----------------------------------------------------------------------
// SVGTextFrame SVG DOM methods
/**
* Returns whether the specified node has any non-empty Text
* beneath it.
*/
static bool HasTextContent(nsIContent* aContent) {
NS_ASSERTION(aContent, "expected non-null aContent");
TextNodeIterator it(aContent);
for (Text* text = it.Current(); text; text = it.Next()) {
if (text->TextLength() != 0) {
return true;
}
}
return false;
}
/**
* Returns the number of DOM characters beneath the specified node.
*/
static uint32_t GetTextContentLength(nsIContent* aContent) {
NS_ASSERTION(aContent, "expected non-null aContent");
uint32_t length = 0;
TextNodeIterator it(aContent);
for (Text* text = it.Current(); text; text = it.Next()) {
length += text->TextLength();
}
return length;
}
int32_t SVGTextFrame::ConvertTextElementCharIndexToAddressableIndex(
int32_t aIndex, nsIContent* aContent) {
CharIterator it(this, CharIterator::eOriginal, aContent);
if (!it.AdvanceToSubtree()) {
return -1;
}
int32_t result = 0;
int32_t textElementCharIndex;
while (!it.AtEnd() && it.IsWithinSubtree()) {
bool addressable = !it.IsOriginalCharUnaddressable();
textElementCharIndex = it.TextElementCharIndex();
it.Next();
uint32_t delta = it.TextElementCharIndex() - textElementCharIndex;
aIndex -= delta;
if (addressable) {
if (aIndex < 0) {
return result;
}
result += delta;
}
}
return -1;
}
/**
* Implements the SVG DOM GetNumberOfChars method for the specified
* text content element.
*/
uint32_t SVGTextFrame::GetNumberOfChars(nsIContent* aContent) {
nsIFrame* kid = PrincipalChildList().FirstChild();
if (kid->IsSubtreeDirty()) {
// We're never reflowed if we're under a non-SVG element that is
// never reflowed (such as the HTML 'caption' element).
return 0;
}
UpdateGlyphPositioning();
uint32_t n = 0;
CharIterator it(this, CharIterator::eAddressable, aContent);
if (it.AdvanceToSubtree()) {
while (!it.AtEnd() && it.IsWithinSubtree()) {
n++;
it.Next();
}
}
return n;
}
/**
* Implements the SVG DOM GetComputedTextLength method for the specified
* text child element.
*/
float SVGTextFrame::GetComputedTextLength(nsIContent* aContent) {
nsIFrame* kid = PrincipalChildList().FirstChild();
if (kid->IsSubtreeDirty()) {
// We're never reflowed if we're under a non-SVG element that is
// never reflowed (such as the HTML 'caption' element).
//
// If we ever decide that we need to return accurate values here,
// we could do similar work to GetSubStringLength.
return 0;
}
UpdateGlyphPositioning();
float cssPxPerDevPx = nsPresContext::AppUnitsToFloatCSSPixels(
PresContext()->AppUnitsPerDevPixel());
nscoord length = 0;
TextRenderedRunIterator it(this, TextRenderedRunIterator::eAllFrames,
aContent);
for (TextRenderedRun run = it.Current(); run.mFrame; run = it.Next()) {
length += run.GetAdvanceWidth();
}
return PresContext()->AppUnitsToGfxUnits(length) * cssPxPerDevPx *
mLengthAdjustScaleFactor / mFontSizeScaleFactor;
}
/**
* Implements the SVG DOM SelectSubString method for the specified
* text content element.
*/
void SVGTextFrame::SelectSubString(nsIContent* aContent, uint32_t charnum,
uint32_t nchars, ErrorResult& aRv) {
nsIFrame* kid = PrincipalChildList().FirstChild();
if (kid->IsSubtreeDirty()) {
// We're never reflowed if we're under a non-SVG element that is
// never reflowed (such as the HTML 'caption' element).
// XXXbz Should this just return without throwing like the no-frame case?
aRv.ThrowInvalidStateError("No layout information available for SVG text");
return;
}
UpdateGlyphPositioning();
// Convert charnum/nchars from addressable characters relative to
// aContent to global character indices.
CharIterator chit(this, CharIterator::eAddressable, aContent);
if (!chit.AdvanceToSubtree() || !chit.Next(charnum) ||
chit.IsAfterSubtree()) {
aRv.ThrowIndexSizeError("Character index out of range");
return;
}
charnum = chit.TextElementCharIndex();
const RefPtr<nsIContent> content = chit.TextFrame()->GetContent();
chit.NextWithinSubtree(nchars);
nchars = chit.TextElementCharIndex() - charnum;
RefPtr<nsFrameSelection> frameSelection = GetFrameSelection();
frameSelection->HandleClick(content, charnum, charnum + nchars,
nsFrameSelection::FocusMode::kCollapseToNewPoint,
CaretAssociationHint::Before);
}
/**
* For some content we cannot (or currently cannot) compute the length
* without reflowing. In those cases we need to fall back to using
* GetSubStringLengthSlowFallback.
*
* We fall back for textPath since we need glyph positioning in order to
* tell if any characters should be ignored due to having fallen off the
* end of the textPath.
*
* We fall back for bidi because GetTrimmedOffsets does not produce the
* correct results for bidi continuations when passed aPostReflow = false.
* XXX It may be possible to determine which continuations to trim from (and
* which sides), but currently we don't do that. It would require us to
* identify the visual (rather than logical) start and end of the line, to
* avoid trimming at line-internal frame boundaries. Maybe nsBidiPresUtils
* methods like GetFrameToRightOf and GetFrameToLeftOf would help?
*
*/
bool SVGTextFrame::RequiresSlowFallbackForSubStringLength() {
TextFrameIterator frameIter(this);
for (nsTextFrame* frame = frameIter.Current(); frame;
frame = frameIter.Next()) {
if (frameIter.TextPathFrame() || frame->GetNextContinuation()) {
return true;
}
}
return false;
}
/**
* Implements the SVG DOM GetSubStringLength method for the specified
* text content element.
*/
float SVGTextFrame::GetSubStringLengthFastPath(nsIContent* aContent,
uint32_t charnum,
uint32_t nchars,
ErrorResult& aRv) {
MOZ_ASSERT(!RequiresSlowFallbackForSubStringLength());
// We only need our text correspondence to be up to date (no need to call
// UpdateGlyphPositioning).
TextNodeCorrespondenceRecorder::RecordCorrespondence(this);
// Convert charnum/nchars from addressable characters relative to
// aContent to global character indices.
CharIterator chit(this, CharIterator::eAddressable, aContent,
/* aPostReflow */ false);
if (!chit.AdvanceToSubtree() || !chit.Next(charnum) ||
chit.IsAfterSubtree()) {
aRv.ThrowIndexSizeError("Character index out of range");
return 0;
}
// We do this after the ThrowIndexSizeError() bit so JS calls correctly throw
// when necessary.
if (nchars == 0) {
return 0.0f;
}
charnum = chit.TextElementCharIndex();
chit.NextWithinSubtree(nchars);
nchars = chit.TextElementCharIndex() - charnum;
// Sum of the substring advances.
nscoord textLength = 0;
TextFrameIterator frit(this); // aSubtree = nullptr
// Index of the first non-skipped char in the frame, and of a subsequent char
// that we're interested in. Both are relative to the index of the first
// non-skipped char in the ancestor <text> element.
uint32_t frameStartTextElementCharIndex = 0;
uint32_t textElementCharIndex;
for (nsTextFrame* frame = frit.Current(); frame; frame = frit.Next()) {
frameStartTextElementCharIndex += frit.UndisplayedCharacters();
textElementCharIndex = frameStartTextElementCharIndex;
// Offset into frame's Text:
const uint32_t untrimmedOffset = frame->GetContentOffset();
const uint32_t untrimmedLength = frame->GetContentEnd() - untrimmedOffset;
// Trim the offset/length to remove any leading/trailing white space.
uint32_t trimmedOffset = untrimmedOffset;
uint32_t trimmedLength = untrimmedLength;
nsTextFrame::TrimmedOffsets trimmedOffsets = frame->GetTrimmedOffsets(
frame->TextFragment(), nsTextFrame::TrimmedOffsetFlags::NotPostReflow);
TrimOffsets(trimmedOffset, trimmedLength, trimmedOffsets);
textElementCharIndex += trimmedOffset - untrimmedOffset;
if (textElementCharIndex >= charnum + nchars) {
break; // we're past the end of the substring
}
uint32_t offset = textElementCharIndex;
// Intersect the substring we are interested in with the range covered by
// the nsTextFrame.
IntersectInterval(offset, trimmedLength, charnum, nchars);
if (trimmedLength != 0) {
// Convert offset into an index into the frame.
offset += trimmedOffset - textElementCharIndex;
gfxSkipCharsIterator it = frame->EnsureTextRun(nsTextFrame::eInflated);
gfxTextRun* textRun = frame->GetTextRun(nsTextFrame::eInflated);
nsTextFrame::PropertyProvider provider(frame, it);
Range range = ConvertOriginalToSkipped(it, offset, trimmedLength);
// Accumulate the advance.
textLength += textRun->GetAdvanceWidth(range, &provider);
}
// Advance, ready for next call:
frameStartTextElementCharIndex += untrimmedLength;
}
nsPresContext* presContext = PresContext();
float cssPxPerDevPx = nsPresContext::AppUnitsToFloatCSSPixels(
presContext->AppUnitsPerDevPixel());
return presContext->AppUnitsToGfxUnits(textLength) * cssPxPerDevPx /
mFontSizeScaleFactor;
}
float SVGTextFrame::GetSubStringLengthSlowFallback(nsIContent* aContent,
uint32_t charnum,
uint32_t nchars,
ErrorResult& aRv) {
UpdateGlyphPositioning();
// Convert charnum/nchars from addressable characters relative to
// aContent to global character indices.
CharIterator chit(this, CharIterator::eAddressable, aContent);
if (!chit.AdvanceToSubtree() || !chit.Next(charnum) ||
chit.IsAfterSubtree()) {
aRv.ThrowIndexSizeError("Character index out of range");
return 0;
}
if (nchars == 0) {
return 0.0f;
}
charnum = chit.TextElementCharIndex();
chit.NextWithinSubtree(nchars);
nchars = chit.TextElementCharIndex() - charnum;
// Find each rendered run that intersects with the range defined
// by charnum/nchars.
nscoord textLength = 0;
TextRenderedRunIterator runIter(this, TextRenderedRunIterator::eAllFrames);
TextRenderedRun run = runIter.Current();
while (run.mFrame) {
// If this rendered run is past the substring we are interested in, we
// are done.
uint32_t offset = run.mTextElementCharIndex;
if (offset >= charnum + nchars) {
break;
}
// Intersect the substring we are interested in with the range covered by
// the rendered run.
uint32_t length = run.mTextFrameContentLength;
IntersectInterval(offset, length, charnum, nchars);
if (length != 0) {
// Convert offset into an index into the frame.
offset += run.mTextFrameContentOffset - run.mTextElementCharIndex;
gfxSkipCharsIterator it =
run.mFrame->EnsureTextRun(nsTextFrame::eInflated);
gfxTextRun* textRun = run.mFrame->GetTextRun(nsTextFrame::eInflated);
nsTextFrame::PropertyProvider provider(run.mFrame, it);
Range range = ConvertOriginalToSkipped(it, offset, length);
// Accumulate the advance.
textLength += textRun->GetAdvanceWidth(range, &provider);
}
run = runIter.Next();
}
nsPresContext* presContext = PresContext();
float cssPxPerDevPx = nsPresContext::AppUnitsToFloatCSSPixels(
presContext->AppUnitsPerDevPixel());
return presContext->AppUnitsToGfxUnits(textLength) * cssPxPerDevPx /
mFontSizeScaleFactor;
}
/**
* Implements the SVG DOM GetCharNumAtPosition method for the specified
* text content element.
*/
int32_t SVGTextFrame::GetCharNumAtPosition(nsIContent* aContent,
const DOMPointInit& aPoint) {
nsIFrame* kid = PrincipalChildList().FirstChild();
if (kid->IsSubtreeDirty()) {
// We're never reflowed if we're under a non-SVG element that is
// never reflowed (such as the HTML 'caption' element).
return -1;
}
UpdateGlyphPositioning();
nsPresContext* context = PresContext();
gfxPoint p(aPoint.mX, aPoint.mY);
int32_t result = -1;
TextRenderedRunIterator it(this, TextRenderedRunIterator::eAllFrames,
aContent);
for (TextRenderedRun run = it.Current(); run.mFrame; run = it.Next()) {
// Hit test this rendered run. Later runs will override earlier ones.
int32_t index = run.GetCharNumAtPosition(context, p);
if (index != -1) {
result = index + run.mTextElementCharIndex;
}
}
if (result == -1) {
return result;
}
return ConvertTextElementCharIndexToAddressableIndex(result, aContent);
}
/**
* Implements the SVG DOM GetStartPositionOfChar method for the specified
* text content element.
*/
already_AddRefed<DOMSVGPoint> SVGTextFrame::GetStartPositionOfChar(
nsIContent* aContent, uint32_t aCharNum, ErrorResult& aRv) {
nsIFrame* kid = PrincipalChildList().FirstChild();
if (kid->IsSubtreeDirty()) {
// We're never reflowed if we're under a non-SVG element that is
// never reflowed (such as the HTML 'caption' element).
aRv.ThrowInvalidStateError("No layout information available for SVG text");
return nullptr;
}
UpdateGlyphPositioning();
CharIterator it(this, CharIterator::eAddressable, aContent);
if (!it.AdvanceToSubtree() || !it.Next(aCharNum)) {
aRv.ThrowIndexSizeError("Character index out of range");
return nullptr;
}
// We need to return the start position of the whole glyph.
uint32_t startIndex = it.GlyphStartTextElementCharIndex();
return do_AddRef(new DOMSVGPoint(ToPoint(mPositions[startIndex].mPosition)));
}
/**
* Returns the advance of the entire glyph whose starting character is at
* aTextElementCharIndex.
*
* aIterator, if provided, must be a CharIterator that already points to
* aTextElementCharIndex that is restricted to aContent and is using
* filter mode eAddressable.
*/
static gfxFloat GetGlyphAdvance(SVGTextFrame* aFrame, nsIContent* aContent,
uint32_t aTextElementCharIndex,
CharIterator* aIterator) {
MOZ_ASSERT(!aIterator || (aIterator->Filter() == CharIterator::eAddressable &&
aIterator->GetSubtree() == aContent &&
aIterator->GlyphStartTextElementCharIndex() ==
aTextElementCharIndex),
"Invalid aIterator");
Maybe<CharIterator> newIterator;
CharIterator* it = aIterator;
if (!it) {
newIterator.emplace(aFrame, CharIterator::eAddressable, aContent);
if (!newIterator->AdvanceToSubtree()) {
MOZ_ASSERT_UNREACHABLE("Invalid aContent");
return 0.0;
}
it = newIterator.ptr();
}
while (it->GlyphStartTextElementCharIndex() != aTextElementCharIndex) {
if (!it->Next()) {
MOZ_ASSERT_UNREACHABLE("Invalid aTextElementCharIndex");
return 0.0;
}
}
if (it->AtEnd()) {
MOZ_ASSERT_UNREACHABLE("Invalid aTextElementCharIndex");
return 0.0;
}
nsPresContext* presContext = aFrame->PresContext();
gfxFloat advance = 0.0;
for (;;) {
advance += it->GetAdvance(presContext);
if (!it->Next() ||
it->GlyphStartTextElementCharIndex() != aTextElementCharIndex) {
break;
}
}
return advance;
}
/**
* Implements the SVG DOM GetEndPositionOfChar method for the specified
* text content element.
*/
already_AddRefed<DOMSVGPoint> SVGTextFrame::GetEndPositionOfChar(
nsIContent* aContent, uint32_t aCharNum, ErrorResult& aRv) {
nsIFrame* kid = PrincipalChildList().FirstChild();
if (kid->IsSubtreeDirty()) {
// We're never reflowed if we're under a non-SVG element that is
// never reflowed (such as the HTML 'caption' element).
aRv.ThrowInvalidStateError("No layout information available for SVG text");
return nullptr;
}
UpdateGlyphPositioning();
CharIterator it(this, CharIterator::eAddressable, aContent);
if (!it.AdvanceToSubtree() || !it.Next(aCharNum)) {
aRv.ThrowIndexSizeError("Character index out of range");
return nullptr;
}
// We need to return the end position of the whole glyph.
uint32_t startIndex = it.GlyphStartTextElementCharIndex();
// Get the advance of the glyph.
gfxFloat advance =
GetGlyphAdvance(this, aContent, startIndex,
it.IsClusterAndLigatureGroupStart() ? &it : nullptr);
if (it.TextRun()->IsRightToLeft()) {
advance = -advance;
}
// The end position is the start position plus the advance in the direction
// of the glyph's rotation.
Matrix m = Matrix::Rotation(mPositions[startIndex].mAngle) *
Matrix::Translation(ToPoint(mPositions[startIndex].mPosition));
Point p = m.TransformPoint(Point(advance / mFontSizeScaleFactor, 0));
return do_AddRef(new DOMSVGPoint(p));
}
/**
* Implements the SVG DOM GetExtentOfChar method for the specified
* text content element.
*/
already_AddRefed<SVGRect> SVGTextFrame::GetExtentOfChar(nsIContent* aContent,
uint32_t aCharNum,
ErrorResult& aRv) {
nsIFrame* kid = PrincipalChildList().FirstChild();
if (kid->IsSubtreeDirty()) {
// We're never reflowed if we're under a non-SVG element that is
// never reflowed (such as the HTML 'caption' element).
aRv.ThrowInvalidStateError("No layout information available for SVG text");
return nullptr;
}
UpdateGlyphPositioning();
// Search for the character whose addressable index is aCharNum.
CharIterator it(this, CharIterator::eAddressable, aContent);
if (!it.AdvanceToSubtree() || !it.Next(aCharNum)) {
aRv.ThrowIndexSizeError("Character index out of range");
return nullptr;
}
nsPresContext* presContext = PresContext();
float cssPxPerDevPx = nsPresContext::AppUnitsToFloatCSSPixels(
presContext->AppUnitsPerDevPixel());
nsTextFrame* textFrame = it.TextFrame();
uint32_t startIndex = it.GlyphStartTextElementCharIndex();
bool isRTL = it.TextRun()->IsRightToLeft();
bool isVertical = it.TextRun()->IsVertical();
// Get the glyph advance.
gfxFloat advance =
GetGlyphAdvance(this, aContent, startIndex,
it.IsClusterAndLigatureGroupStart() ? &it : nullptr);
gfxFloat x = isRTL ? -advance : 0.0;
// The ascent and descent gives the height of the glyph.
gfxFloat ascent, descent;
GetAscentAndDescentInAppUnits(textFrame, ascent, descent);
// The horizontal extent is the origin of the glyph plus the advance
// in the direction of the glyph's rotation.
gfxMatrix m;
m.PreTranslate(mPositions[startIndex].mPosition);
m.PreRotate(mPositions[startIndex].mAngle);
m.PreScale(1 / mFontSizeScaleFactor, 1 / mFontSizeScaleFactor);
gfxRect glyphRect;
if (isVertical) {
glyphRect = gfxRect(
-presContext->AppUnitsToGfxUnits(descent) * cssPxPerDevPx, x,
presContext->AppUnitsToGfxUnits(ascent + descent) * cssPxPerDevPx,
advance);
} else {
glyphRect = gfxRect(
x, -presContext->AppUnitsToGfxUnits(ascent) * cssPxPerDevPx, advance,
presContext->AppUnitsToGfxUnits(ascent + descent) * cssPxPerDevPx);
}
// Transform the glyph's rect into user space.
gfxRect r = m.TransformBounds(glyphRect);
return do_AddRef(new SVGRect(aContent, ToRect(r)));
}
/**
* Implements the SVG DOM GetRotationOfChar method for the specified
* text content element.
*/
float SVGTextFrame::GetRotationOfChar(nsIContent* aContent, uint32_t aCharNum,
ErrorResult& aRv) {
nsIFrame* kid = PrincipalChildList().FirstChild();
if (kid->IsSubtreeDirty()) {
// We're never reflowed if we're under a non-SVG element that is
// never reflowed (such as the HTML 'caption' element).
aRv.ThrowInvalidStateError("No layout information available for SVG text");
return 0;
}
UpdateGlyphPositioning();
CharIterator it(this, CharIterator::eAddressable, aContent);
if (!it.AdvanceToSubtree() || !it.Next(aCharNum)) {
aRv.ThrowIndexSizeError("Character index out of range");
return 0;
}
// we need to account for the glyph's underlying orientation
const gfxTextRun::GlyphRun& glyphRun = it.GlyphRun();
int32_t glyphOrientation =
90 * (glyphRun.IsSidewaysRight() - glyphRun.IsSidewaysLeft());
return mPositions[it.TextElementCharIndex()].mAngle * 180.0 / M_PI +
glyphOrientation;
}
//----------------------------------------------------------------------
// SVGTextFrame text layout methods
/**
* Given the character position array before values have been filled in
* to any unspecified positions, and an array of dx/dy values, returns whether
* a character at a given index should start a new rendered run.
*
* @param aPositions The array of character positions before unspecified
* positions have been filled in and dx/dy values have been added to them.
* @param aDeltas The array of dx/dy values.
* @param aIndex The character index in question.
*/
static bool ShouldStartRunAtIndex(const nsTArray<CharPosition>& aPositions,
const nsTArray<gfxPoint>& aDeltas,
uint32_t aIndex) {
if (aIndex == 0) {
return true;
}
if (aIndex < aPositions.Length()) {
// If an explicit x or y value was given, start a new run.
if (aPositions[aIndex].IsXSpecified() ||
aPositions[aIndex].IsYSpecified()) {
return true;
}
// If a non-zero rotation was given, or the previous character had a non-
// zero rotation, start a new run.
if ((aPositions[aIndex].IsAngleSpecified() &&
aPositions[aIndex].mAngle != 0.0f) ||
(aPositions[aIndex - 1].IsAngleSpecified() &&
(aPositions[aIndex - 1].mAngle != 0.0f))) {
return true;
}
}
if (aIndex < aDeltas.Length()) {
// If a non-zero dx or dy value was given, start a new run.
if (aDeltas[aIndex].x != 0.0 || aDeltas[aIndex].y != 0.0) {
return true;
}
}
return false;
}
bool SVGTextFrame::ResolvePositionsForNode(nsIContent* aContent,
uint32_t& aIndex, bool aInTextPath,
bool& aForceStartOfChunk,
nsTArray<gfxPoint>& aDeltas) {
if (aContent->IsText()) {
// We found a text node.
uint32_t length = aContent->AsText()->TextLength();
if (length) {
uint32_t end = aIndex + length;
if (MOZ_UNLIKELY(end > mPositions.Length())) {
MOZ_ASSERT_UNREACHABLE(
"length of mPositions does not match characters "
"found by iterating content");
return false;
}
if (aForceStartOfChunk) {
// Note this character as starting a new anchored chunk.
mPositions[aIndex].mStartOfChunk = true;
aForceStartOfChunk = false;
}
while (aIndex < end) {
// Record whether each of these characters should start a new rendered
// run. That is always the case for characters on a text path.
//
// Run boundaries due to rotate="" values are handled in
// DoGlyphPositioning.
if (aInTextPath || ShouldStartRunAtIndex(mPositions, aDeltas, aIndex)) {
mPositions[aIndex].mRunBoundary = true;
}
aIndex++;
}
}
return true;
}
// Skip past elements that aren't text content elements.
if (!IsTextContentElement(aContent)) {
return true;
}
if (aContent->IsSVGElement(nsGkAtoms::textPath)) {
// Any ‘y’ attributes on horizontal <textPath> elements are ignored.
// Similarly, for vertical <texPath>s x attributes are ignored.
// <textPath> elements behave as if they have x="0" y="0" on them, but only
// if there is not a value for the non-ignored coordinate that got inherited
// from a parent. We skip this if there is no text content, so that empty
// <textPath>s don't interrupt the layout of text in the parent element.
if (HasTextContent(aContent)) {
if (MOZ_UNLIKELY(aIndex >= mPositions.Length())) {
MOZ_ASSERT_UNREACHABLE(
"length of mPositions does not match characters "
"found by iterating content");
return false;
}
bool vertical = GetWritingMode().IsVertical();
if (vertical || !mPositions[aIndex].IsXSpecified()) {
mPositions[aIndex].mPosition.x = 0.0;
}
if (!vertical || !mPositions[aIndex].IsYSpecified()) {
mPositions[aIndex].mPosition.y = 0.0;
}
mPositions[aIndex].mStartOfChunk = true;
}
} else if (!aContent->IsSVGElement(nsGkAtoms::a)) {
MOZ_ASSERT(aContent->IsSVGElement());
// We have a text content element that can have x/y/dx/dy/rotate attributes.
SVGElement* element = static_cast<SVGElement*>(aContent);
// Get x, y, dx, dy.
SVGUserUnitList x, y, dx, dy;
element->GetAnimatedLengthListValues(&x, &y, &dx, &dy, nullptr);
// Get rotate.
const SVGNumberList* rotate = nullptr;
SVGAnimatedNumberList* animatedRotate =
element->GetAnimatedNumberList(nsGkAtoms::rotate);
if (animatedRotate) {
rotate = &animatedRotate->GetAnimValue();
}
bool percentages = false;
uint32_t count = GetTextContentLength(aContent);
if (MOZ_UNLIKELY(aIndex + count > mPositions.Length())) {
MOZ_ASSERT_UNREACHABLE(
"length of mPositions does not match characters "
"found by iterating content");
return false;
}
// New text anchoring chunks start at each character assigned a position
// with x="" or y="", or if we forced one with aForceStartOfChunk due to
// being just after a <textPath>.
uint32_t newChunkCount = std::max(x.Length(), y.Length());
if (!newChunkCount && aForceStartOfChunk) {
newChunkCount = 1;
}
for (uint32_t i = 0, j = 0; i < newChunkCount && j < count; j++) {
if (!mPositions[aIndex + j].mUnaddressable) {
mPositions[aIndex + j].mStartOfChunk = true;
i++;
}
}
// Copy dx="" and dy="" values into aDeltas.
if (!dx.IsEmpty() || !dy.IsEmpty()) {
// Any unspecified deltas when we grow the array just get left as 0s.
aDeltas.EnsureLengthAtLeast(aIndex + count);
for (uint32_t i = 0, j = 0; i < dx.Length() && j < count; j++) {
if (!mPositions[aIndex + j].mUnaddressable) {
aDeltas[aIndex + j].x = dx[i];
percentages = percentages || dx.HasPercentageValueAt(i);
i++;
}
}
for (uint32_t i = 0, j = 0; i < dy.Length() && j < count; j++) {
if (!mPositions[aIndex + j].mUnaddressable) {
aDeltas[aIndex + j].y = dy[i];
percentages = percentages || dy.HasPercentageValueAt(i);
i++;
}
}
}
// Copy x="" and y="" values.
for (uint32_t i = 0, j = 0; i < x.Length() && j < count; j++) {
if (!mPositions[aIndex + j].mUnaddressable) {
mPositions[aIndex + j].mPosition.x = x[i];
percentages = percentages || x.HasPercentageValueAt(i);
i++;
}
}
for (uint32_t i = 0, j = 0; i < y.Length() && j < count; j++) {
if (!mPositions[aIndex + j].mUnaddressable) {
mPositions[aIndex + j].mPosition.y = y[i];
percentages = percentages || y.HasPercentageValueAt(i);
i++;
}
}
// Copy rotate="" values.
if (rotate && !rotate->IsEmpty()) {
uint32_t i = 0, j = 0;
while (i < rotate->Length() && j < count) {
if (!mPositions[aIndex + j].mUnaddressable) {
mPositions[aIndex + j].mAngle = M_PI * (*rotate)[i] / 180.0;
i++;
}
j++;
}
// Propagate final rotate="" value to the end of this element.
while (j < count) {
mPositions[aIndex + j].mAngle = mPositions[aIndex + j - 1].mAngle;
j++;
}
}
if (percentages) {
AddStateBits(NS_STATE_SVG_POSITIONING_MAY_USE_PERCENTAGES);
}
}
// Recurse to children.
bool inTextPath = aInTextPath || aContent->IsSVGElement(nsGkAtoms::textPath);
for (nsIContent* child = aContent->GetFirstChild(); child;
child = child->GetNextSibling()) {
bool ok = ResolvePositionsForNode(child, aIndex, inTextPath,
aForceStartOfChunk, aDeltas);
if (!ok) {
return false;
}
}
if (aContent->IsSVGElement(nsGkAtoms::textPath)) {
// Force a new anchored chunk just after a <textPath>.
aForceStartOfChunk = true;
}
return true;
}
bool SVGTextFrame::ResolvePositions(nsTArray<gfxPoint>& aDeltas,
bool aRunPerGlyph) {
NS_ASSERTION(mPositions.IsEmpty(), "expected mPositions to be empty");
RemoveStateBits(NS_STATE_SVG_POSITIONING_MAY_USE_PERCENTAGES);
CharIterator it(this, CharIterator::eOriginal, /* aSubtree */ nullptr);
if (it.AtEnd()) {
return false;
}
// We assume the first character position is (0,0) unless we later see
// otherwise, and note it as unaddressable if it is.
bool firstCharUnaddressable = it.IsOriginalCharUnaddressable();
mPositions.AppendElement(CharPosition::Unspecified(firstCharUnaddressable));
// Fill in unspecified positions for all remaining characters, noting
// them as unaddressable if they are.
uint32_t index = 0;
while (it.Next()) {
while (++index < it.TextElementCharIndex()) {
mPositions.AppendElement(CharPosition::Unspecified(false));
}
mPositions.AppendElement(
CharPosition::Unspecified(it.IsOriginalCharUnaddressable()));
}
while (++index < it.TextElementCharIndex()) {
mPositions.AppendElement(CharPosition::Unspecified(false));
}
// Recurse over the content and fill in character positions as we go.
bool forceStartOfChunk = false;
index = 0;
bool ok = ResolvePositionsForNode(mContent, index, aRunPerGlyph,
forceStartOfChunk, aDeltas);
return ok && index > 0;
}
void SVGTextFrame::DetermineCharPositions(nsTArray<nsPoint>& aPositions) {
NS_ASSERTION(aPositions.IsEmpty(), "expected aPositions to be empty");
nsPoint position;
TextFrameIterator frit(this);
for (nsTextFrame* frame = frit.Current(); frame; frame = frit.Next()) {
gfxSkipCharsIterator it = frame->EnsureTextRun(nsTextFrame::eInflated);
gfxTextRun* textRun = frame->GetTextRun(nsTextFrame::eInflated);
nsTextFrame::PropertyProvider provider(frame, it);
// Reset the position to the new frame's position.
position = frit.Position();
if (textRun->IsVertical()) {
if (textRun->IsRightToLeft()) {
position.y += frame->GetRect().height;
}
position.x += GetBaselinePosition(frame, textRun, frit.DominantBaseline(),
mFontSizeScaleFactor);
} else {
if (textRun->IsRightToLeft()) {
position.x += frame->GetRect().width;
}
position.y += GetBaselinePosition(frame, textRun, frit.DominantBaseline(),
mFontSizeScaleFactor);
}
// Any characters not in a frame, e.g. when display:none.
for (uint32_t i = 0; i < frit.UndisplayedCharacters(); i++) {
aPositions.AppendElement(position);
}
// Any white space characters trimmed at the start of the line of text.
nsTextFrame::TrimmedOffsets trimmedOffsets =
frame->GetTrimmedOffsets(frame->TextFragment());
while (it.GetOriginalOffset() < trimmedOffsets.mStart) {
aPositions.AppendElement(position);
it.AdvanceOriginal(1);
}
// Visible characters in the text frame.
while (it.GetOriginalOffset() < frame->GetContentEnd()) {
aPositions.AppendElement(position);
if (!it.IsOriginalCharSkipped()) {
// Accumulate partial ligature advance into position. (We must get
// partial advances rather than get the advance of the whole ligature
// group / cluster at once, since the group may span text frames, and
// the PropertyProvider only has spacing information for the current
// text frame.)
uint32_t offset = it.GetSkippedOffset();
nscoord advance =
textRun->GetAdvanceWidth(Range(offset, offset + 1), &provider);
(textRun->IsVertical() ? position.y : position.x) +=
textRun->IsRightToLeft() ? -advance : advance;
}
it.AdvanceOriginal(1);
}
}
// Finally any characters at the end that are not in a frame.
for (uint32_t i = 0; i < frit.UndisplayedCharacters(); i++) {
aPositions.AppendElement(position);
}
}
/**
* Physical text-anchor values.
*/
enum TextAnchorSide { eAnchorLeft, eAnchorMiddle, eAnchorRight };
/**
* Converts a logical text-anchor value to its physical value, based on whether
* it is for an RTL frame.
*/
static TextAnchorSide ConvertLogicalTextAnchorToPhysical(
StyleTextAnchor aTextAnchor, bool aIsRightToLeft) {
NS_ASSERTION(uint8_t(aTextAnchor) <= 3, "unexpected value for aTextAnchor");
if (!aIsRightToLeft) {
return TextAnchorSide(uint8_t(aTextAnchor));
}
return TextAnchorSide(2 - uint8_t(aTextAnchor));
}
/**
* Shifts the recorded character positions for an anchored chunk.
*
* @param aCharPositions The recorded character positions.
* @param aChunkStart The character index the starts the anchored chunk. This
* character's initial position is the anchor point.
* @param aChunkEnd The character index just after the end of the anchored
* chunk.
* @param aVisIStartEdge The left/top-most edge of any of the glyphs within the
* anchored chunk.
* @param aVisIEndEdge The right/bottom-most edge of any of the glyphs within
* the anchored chunk.
* @param aAnchorSide The direction to anchor.
*/
static void ShiftAnchoredChunk(nsTArray<CharPosition>& aCharPositions,
uint32_t aChunkStart, uint32_t aChunkEnd,
gfxFloat aVisIStartEdge, gfxFloat aVisIEndEdge,
TextAnchorSide aAnchorSide, bool aVertical) {
NS_ASSERTION(aVisIStartEdge <= aVisIEndEdge,
"unexpected anchored chunk edges");
NS_ASSERTION(aChunkStart < aChunkEnd,
"unexpected values for aChunkStart and aChunkEnd");
gfxFloat shift = aVertical ? aCharPositions[aChunkStart].mPosition.y
: aCharPositions[aChunkStart].mPosition.x;
switch (aAnchorSide) {
case eAnchorLeft:
shift -= aVisIStartEdge;
break;
case eAnchorMiddle:
shift -= (aVisIStartEdge + aVisIEndEdge) / 2;
break;
case eAnchorRight:
shift -= aVisIEndEdge;
break;
default:
MOZ_ASSERT_UNREACHABLE("unexpected value for aAnchorSide");
}
if (shift != 0.0) {
if (aVertical) {
for (uint32_t i = aChunkStart; i < aChunkEnd; i++) {
aCharPositions[i].mPosition.y += shift;
}
} else {
for (uint32_t i = aChunkStart; i < aChunkEnd; i++) {
aCharPositions[i].mPosition.x += shift;
}
}
}
}
void SVGTextFrame::AdjustChunksForLineBreaks() {
nsBlockFrame* block = do_QueryFrame(PrincipalChildList().FirstChild());
NS_ASSERTION(block, "expected block frame");
nsBlockFrame::LineIterator line = block->LinesBegin();
CharIterator it(this, CharIterator::eOriginal, /* aSubtree */ nullptr);
while (!it.AtEnd() && line != block->LinesEnd()) {
if (it.TextFrame() == line->mFirstChild) {
mPositions[it.TextElementCharIndex()].mStartOfChunk = true;
line++;
}
it.AdvancePastCurrentFrame();
}
}
void SVGTextFrame::AdjustPositionsForClusters() {
nsPresContext* presContext = PresContext();
// Find all of the characters that are in the middle of a cluster or
// ligature group, and adjust their positions and rotations to match
// the first character of the cluster/group.
//
// Also move the boundaries of text rendered runs and anchored chunks to
// not lie in the middle of cluster/group.
// The partial advance of the current cluster or ligature group that we
// have accumulated.
gfxFloat partialAdvance = 0.0;
CharIterator it(this, CharIterator::eUnskipped, /* aSubtree */ nullptr);
bool isFirst = true;
while (!it.AtEnd()) {
if (it.IsClusterAndLigatureGroupStart() || isFirst) {
// If we're at the start of a new cluster or ligature group, reset our
// accumulated partial advance. Also treat the beginning of the text as
// an anchor, even if it is a combining character and therefore was
// marked as being a Unicode cluster continuation.
partialAdvance = 0.0;
isFirst = false;
} else {
// Otherwise, we're in the middle of a cluster or ligature group, and
// we need to use the currently accumulated partial advance to adjust
// the character's position and rotation.
// Find the start of the cluster/ligature group.
uint32_t charIndex = it.TextElementCharIndex();
uint32_t startIndex = it.GlyphStartTextElementCharIndex();
MOZ_ASSERT(charIndex != startIndex,
"If the current character is in the middle of a cluster or "
"ligature group, then charIndex must be different from "
"startIndex");
mPositions[charIndex].mClusterOrLigatureGroupMiddle = true;
// Don't allow different rotations on ligature parts.
bool rotationAdjusted = false;
double angle = mPositions[startIndex].mAngle;
if (mPositions[charIndex].mAngle != angle) {
mPositions[charIndex].mAngle = angle;
rotationAdjusted = true;
}
// Update the character position.
gfxFloat advance = partialAdvance / mFontSizeScaleFactor;
gfxPoint direction = gfxPoint(cos(angle), sin(angle)) *
(it.TextRun()->IsRightToLeft() ? -1.0 : 1.0);
if (it.TextRun()->IsVertical()) {
std::swap(direction.x, direction.y);
}
mPositions[charIndex].mPosition =
mPositions[startIndex].mPosition + direction * advance;
// Ensure any runs that would end in the middle of a ligature now end just
// after the ligature.
if (mPositions[charIndex].mRunBoundary) {
mPositions[charIndex].mRunBoundary = false;
if (charIndex + 1 < mPositions.Length()) {
mPositions[charIndex + 1].mRunBoundary = true;
}
} else if (rotationAdjusted) {
if (charIndex + 1 < mPositions.Length()) {
mPositions[charIndex + 1].mRunBoundary = true;
}
}
// Ensure any anchored chunks that would begin in the middle of a ligature
// now begin just after the ligature.
if (mPositions[charIndex].mStartOfChunk) {
mPositions[charIndex].mStartOfChunk = false;
if (charIndex + 1 < mPositions.Length()) {
mPositions[charIndex + 1].mStartOfChunk = true;
}
}
}
// Accumulate the current character's partial advance.
partialAdvance += it.GetAdvance(presContext);
it.Next();
}
}
already_AddRefed<Path> SVGTextFrame::GetTextPath(nsIFrame* aTextPathFrame) {
nsIContent* content = aTextPathFrame->GetContent();
SVGTextPathElement* tp = static_cast<SVGTextPathElement*>(content);
if (tp->mPath.IsRendered()) {
// This is just an attribute so there's no transform that can apply
// so we can just return the path directly.
return tp->mPath.GetAnimValue().BuildPathForMeasuring(
aTextPathFrame->Style()->EffectiveZoom().ToFloat());
}
SVGGeometryElement* geomElement =
SVGObserverUtils::GetAndObserveTextPathsPath(aTextPathFrame);
if (!geomElement) {
return nullptr;
}
RefPtr<Path> path = geomElement->GetOrBuildPathForMeasuring();
if (!path) {
return nullptr;
}
// Apply the geometry element's transform if appropriate.
auto matrix = geomElement->LocalTransform();
if (!matrix.IsIdentity()) {
Path::Transform(path, matrix);
}
return path.forget();
}
gfxFloat SVGTextFrame::GetOffsetScale(nsIFrame* aTextPathFrame) {
nsIContent* content = aTextPathFrame->GetContent();
SVGTextPathElement* tp = static_cast<SVGTextPathElement*>(content);
if (tp->mPath.IsRendered()) {
// A path attribute has no pathLength or transform
// so we return a unit scale.
return 1.0;
}
SVGGeometryElement* geomElement =
SVGObserverUtils::GetAndObserveTextPathsPath(aTextPathFrame);
if (!geomElement) {
return 1.0;
}
return geomElement->GetPathLengthScale(SVGGeometryElement::eForTextPath);
}
gfxFloat SVGTextFrame::GetStartOffset(nsIFrame* aTextPathFrame) {
SVGTextPathElement* tp =
static_cast<SVGTextPathElement*>(aTextPathFrame->GetContent());
SVGAnimatedLength* length =
&tp->mLengthAttributes[SVGTextPathElement::STARTOFFSET];
if (length->IsPercentage()) {
if (!std::isfinite(GetOffsetScale(aTextPathFrame))) {
// Either pathLength="0" for this path or the path has 0 length.
return 0.0;
}
RefPtr<Path> data = GetTextPath(aTextPathFrame);
return data ? length->GetAnimValInSpecifiedUnits() * data->ComputeLength() /
100.0
: 0.0;
}
float lengthValue = length->GetAnimValueWithZoom(tp);
// If offsetScale is infinity we want to return 0 not NaN
return lengthValue == 0 ? 0.0 : lengthValue * GetOffsetScale(aTextPathFrame);
}
void SVGTextFrame::DoTextPathLayout() {
nsPresContext* context = PresContext();
CharIterator it(this, CharIterator::eOriginal, /* aSubtree */ nullptr);
while (!it.AtEnd()) {
nsIFrame* textPathFrame = it.TextPathFrame();
if (!textPathFrame) {
// Skip past this frame if we're not in a text path.
it.AdvancePastCurrentFrame();
continue;
}
// Get the path itself.
RefPtr<Path> path = GetTextPath(textPathFrame);
if (!path) {
uint32_t start = it.TextElementCharIndex();
it.AdvancePastCurrentTextPathFrame();
uint32_t end = it.TextElementCharIndex();
for (uint32_t i = start; i < end; i++) {
mPositions[i].mHidden = true;
}
continue;
}
SVGTextPathElement* textPath =
static_cast<SVGTextPathElement*>(textPathFrame->GetContent());
uint16_t side =
textPath->EnumAttributes()[SVGTextPathElement::SIDE].GetAnimValue();
gfxFloat offset = GetStartOffset(textPathFrame);
Float pathLength = path->ComputeLength();
// If the first character within the text path is in the middle of a
// cluster or ligature group, just skip it and don't apply text path
// positioning.
while (!it.AtEnd()) {
if (it.IsOriginalCharSkipped()) {
it.Next();
continue;
}
if (it.IsClusterAndLigatureGroupStart()) {
break;
}
it.Next();
}
bool skippedEndOfTextPath = false;
// Loop for each character in the text path.
while (!it.AtEnd() && it.TextPathFrame() &&
it.TextPathFrame()->GetContent() == textPath) {
// The index of the cluster or ligature group's first character.
uint32_t i = it.TextElementCharIndex();
// The index of the next character of the cluster or ligature.
// We track this as we loop over the characters below so that we
// can detect undisplayed characters and append entries into
// partialAdvances for them.
uint32_t j = i + 1;
MOZ_ASSERT(!mPositions[i].mClusterOrLigatureGroupMiddle);
gfxFloat sign = it.TextRun()->IsRightToLeft() ? -1.0 : 1.0;
bool vertical = it.TextRun()->IsVertical();
// Compute cumulative advances for each character of the cluster or
// ligature group.
AutoTArray<gfxFloat, 4> partialAdvances;
gfxFloat partialAdvance = it.GetAdvance(context);
partialAdvances.AppendElement(partialAdvance);
while (it.Next()) {
// Append entries for any undisplayed characters the CharIterator
// skipped over.
MOZ_ASSERT(j <= it.TextElementCharIndex());
while (j < it.TextElementCharIndex()) {
partialAdvances.AppendElement(partialAdvance);
++j;
}
// This loop may end up outside of the current text path, but
// that's OK; we'll consider any complete cluster or ligature
// group that begins inside the text path as being affected
// by it.
if (it.IsOriginalCharSkipped()) {
if (!it.TextPathFrame()) {
skippedEndOfTextPath = true;
break;
}
// Leave partialAdvance unchanged.
} else if (it.IsClusterAndLigatureGroupStart()) {
break;
} else {
partialAdvance += it.GetAdvance(context);
}
partialAdvances.AppendElement(partialAdvance);
}
if (!skippedEndOfTextPath) {
// Any final undisplayed characters the CharIterator skipped over.
MOZ_ASSERT(j <= it.TextElementCharIndex());
while (j < it.TextElementCharIndex()) {
partialAdvances.AppendElement(partialAdvance);
++j;
}
}
gfxFloat halfAdvance =
partialAdvances.LastElement() / mFontSizeScaleFactor / 2.0;
gfxFloat midx =
(vertical ? mPositions[i].mPosition.y : mPositions[i].mPosition.x) +
sign * halfAdvance + offset;
// Hide the character if it falls off the end of the path.
mPositions[i].mHidden = midx < 0 || midx > pathLength;
// Position the character on the path at the right angle.
Point tangent; // Unit vector tangent to the point we find.
Point pt;
if (side == TEXTPATH_SIDETYPE_RIGHT) {
pt = path->ComputePointAtLength(Float(pathLength - midx), &tangent);
tangent = -tangent;
} else {
pt = path->ComputePointAtLength(Float(midx), &tangent);
}
Float rotation = vertical ? atan2f(-tangent.x, tangent.y)
: atan2f(tangent.y, tangent.x);
Point normal(-tangent.y, tangent.x); // Unit vector normal to the point.
Point offsetFromPath = normal * (vertical ? -mPositions[i].mPosition.x
: mPositions[i].mPosition.y);
pt += offsetFromPath;
Point direction = tangent * sign;
mPositions[i].mPosition =
ThebesPoint(pt) - ThebesPoint(direction) * halfAdvance;
mPositions[i].mAngle += rotation;
// Position any characters for a partial ligature.
for (uint32_t k = i + 1; k < j; k++) {
gfxPoint partialAdvance = ThebesPoint(direction) *
partialAdvances[k - i] / mFontSizeScaleFactor;
mPositions[k].mPosition = mPositions[i].mPosition + partialAdvance;
mPositions[k].mAngle = mPositions[i].mAngle;
mPositions[k].mHidden = mPositions[i].mHidden;
}
}
}
}
void SVGTextFrame::DoAnchoring() {
nsPresContext* presContext = PresContext();
CharIterator it(this, CharIterator::eOriginal, /* aSubtree */ nullptr);
// Don't need to worry about skipped or trimmed characters.
while (!it.AtEnd() &&
(it.IsOriginalCharSkipped() || it.IsOriginalCharTrimmed())) {
it.Next();
}
bool vertical = GetWritingMode().IsVertical();
for (uint32_t start = it.TextElementCharIndex(); start < mPositions.Length();
start = it.TextElementCharIndex()) {
it.AdvanceToCharacter(start);
nsTextFrame* chunkFrame = it.TextFrame();
// Measure characters in this chunk to find the left-most and right-most
// edges of all glyphs within the chunk.
uint32_t index = it.TextElementCharIndex();
uint32_t end = start;
gfxFloat left = std::numeric_limits<gfxFloat>::infinity();
gfxFloat right = -std::numeric_limits<gfxFloat>::infinity();
do {
if (!it.IsOriginalCharSkipped() && !it.IsOriginalCharTrimmed()) {
gfxFloat advance = it.GetAdvance(presContext) / mFontSizeScaleFactor;
gfxFloat pos = it.TextRun()->IsVertical()
? mPositions[index].mPosition.y
: mPositions[index].mPosition.x;
if (it.TextRun()->IsRightToLeft()) {
left = std::min(left, pos - advance);
right = std::max(right, pos);
} else {
left = std::min(left, pos);
right = std::max(right, pos + advance);
}
}
it.Next();
index = end = it.TextElementCharIndex();
} while (!it.AtEnd() && !mPositions[end].mStartOfChunk);
if (left != std::numeric_limits<gfxFloat>::infinity()) {
bool isRTL =
chunkFrame->StyleVisibility()->mDirection == StyleDirection::Rtl;
TextAnchorSide anchor = ConvertLogicalTextAnchorToPhysical(
chunkFrame->StyleSVG()->mTextAnchor, isRTL);
ShiftAnchoredChunk(mPositions, start, end, left, right, anchor, vertical);
}
}
}
void SVGTextFrame::DoGlyphPositioning() {
mPositions.Clear();
RemoveStateBits(NS_STATE_SVG_POSITIONING_DIRTY);
nsIFrame* kid = PrincipalChildList().FirstChild();
if (kid && kid->IsSubtreeDirty()) {
MOZ_ASSERT(false, "should have already reflowed the kid");
return;
}
// Since we can be called directly via GetBBoxContribution, our correspondence
// may not be up to date.
TextNodeCorrespondenceRecorder::RecordCorrespondence(this);
// Determine the positions of each character in app units.
AutoTArray<nsPoint, 64> charPositions;
DetermineCharPositions(charPositions);
if (charPositions.IsEmpty()) {
// No characters, so nothing to do.
return;
}
// If the textLength="" attribute was specified, then we need ResolvePositions
// to record that a new run starts with each glyph.
SVGTextContentElement* element =
static_cast<SVGTextContentElement*>(GetContent());
SVGAnimatedLength* textLengthAttr =
element->GetAnimatedLength(nsGkAtoms::textLength);
uint16_t lengthAdjust =
element->EnumAttributes()[SVGTextContentElement::LENGTHADJUST]
.GetAnimValue();
bool adjustingTextLength = textLengthAttr->IsExplicitlySet();
float expectedTextLength = textLengthAttr->GetAnimValueWithZoom(element);
if (adjustingTextLength &&
(expectedTextLength < 0.0f || lengthAdjust == LENGTHADJUST_UNKNOWN)) {
// If textLength="" is less than zero or lengthAdjust is unknown, ignore it.
adjustingTextLength = false;
}
// Get the x, y, dx, dy, rotate values for the subtree.
AutoTArray<gfxPoint, 16> deltas;
if (!ResolvePositions(deltas, adjustingTextLength)) {
// If ResolvePositions returned false, it means either there were some
// characters in the DOM but none of them are displayed, or there was
// an error in processing mPositions. Clear out mPositions so that we don't
// attempt to do any painting later.
mPositions.Clear();
return;
}
// XXX We might be able to do less work when there is at most a single
// x/y/dx/dy position.
// Truncate the positioning arrays to the actual number of characters present.
TruncateTo(deltas, charPositions);
TruncateTo(mPositions, charPositions);
// Fill in an unspecified position for the first addressable character.
uint32_t first = 0;
while (first + 1 < mPositions.Length() && mPositions[first].mUnaddressable) {
++first;
}
if (!mPositions[first].IsXSpecified()) {
mPositions[first].mPosition.x = 0.0;
}
if (!mPositions[first].IsYSpecified()) {
mPositions[first].mPosition.y = 0.0;
}
if (!mPositions[first].IsAngleSpecified()) {
mPositions[first].mAngle = 0.0;
}
nsPresContext* presContext = PresContext();
bool vertical = GetWritingMode().IsVertical();
float cssPxPerDevPx = nsPresContext::AppUnitsToFloatCSSPixels(
presContext->AppUnitsPerDevPixel());
double factor = cssPxPerDevPx / mFontSizeScaleFactor;
// Determine how much to compress or expand glyph positions due to
// textLength="" and lengthAdjust="".
double adjustment = 0.0;
mLengthAdjustScaleFactor = 1.0f;
if (adjustingTextLength) {
nscoord frameLength =
vertical ? PrincipalChildList().FirstChild()->GetRect().height
: PrincipalChildList().FirstChild()->GetRect().width;
float actualTextLength = static_cast<float>(
presContext->AppUnitsToGfxUnits(frameLength) * factor);
switch (lengthAdjust) {
case LENGTHADJUST_SPACINGANDGLYPHS:
// Scale the glyphs and their positions.
if (actualTextLength > 0) {
mLengthAdjustScaleFactor = expectedTextLength / actualTextLength;
}
break;
default:
MOZ_ASSERT(lengthAdjust == LENGTHADJUST_SPACING);
// Just add space between each glyph.
int32_t adjustableSpaces = 0;
for (uint32_t i = 1; i < mPositions.Length(); i++) {
if (!mPositions[i].mUnaddressable) {
adjustableSpaces++;
}
}
if (adjustableSpaces) {
adjustment =
(expectedTextLength - actualTextLength) / adjustableSpaces;
}
break;
}
}
// Fill in any unspecified character positions based on the positions recorded
// in charPositions, and also add in the dx/dy values.
if (!deltas.IsEmpty()) {
mPositions[0].mPosition += deltas[0];
}
gfxFloat xLengthAdjustFactor = vertical ? 1.0 : mLengthAdjustScaleFactor;
gfxFloat yLengthAdjustFactor = vertical ? mLengthAdjustScaleFactor : 1.0;
for (uint32_t i = 1; i < mPositions.Length(); i++) {
// Fill in unspecified x position.
if (!mPositions[i].IsXSpecified()) {
nscoord d = charPositions[i].x - charPositions[i - 1].x;
mPositions[i].mPosition.x =
mPositions[i - 1].mPosition.x +
presContext->AppUnitsToGfxUnits(d) * factor * xLengthAdjustFactor;
if (!vertical && !mPositions[i].mUnaddressable) {
mPositions[i].mPosition.x += adjustment;
}
}
// Fill in unspecified y position.
if (!mPositions[i].IsYSpecified()) {
nscoord d = charPositions[i].y - charPositions[i - 1].y;
mPositions[i].mPosition.y =
mPositions[i - 1].mPosition.y +
presContext->AppUnitsToGfxUnits(d) * factor * yLengthAdjustFactor;
if (vertical && !mPositions[i].mUnaddressable) {
mPositions[i].mPosition.y += adjustment;
}
}
// Add in dx/dy.
if (i < deltas.Length()) {
mPositions[i].mPosition += deltas[i];
}
// Fill in unspecified rotation values.
if (!mPositions[i].IsAngleSpecified()) {
mPositions[i].mAngle = 0.0f;
}
}
MOZ_ASSERT(mPositions.Length() == charPositions.Length());
AdjustChunksForLineBreaks();
AdjustPositionsForClusters();
DoAnchoring();
DoTextPathLayout();
}
bool SVGTextFrame::ShouldRenderAsPath(nsTextFrame* aFrame,
bool& aShouldPaintSVGGlyphs) {
// Rendering to a clip path.
if (HasAnyStateBits(NS_STATE_SVG_CLIPPATH_CHILD)) {
aShouldPaintSVGGlyphs = false;
return true;
}
aShouldPaintSVGGlyphs = true;
const nsStyleSVG* style = aFrame->StyleSVG();
// Fill is a non-solid paint or is not opaque.
if (!(style->mFill.kind.IsNone() ||
(style->mFill.kind.IsColor() &&
SVGUtils::GetOpacity(style->mFillOpacity, /*aContextPaint*/ nullptr) ==
1.0f))) {
return true;
}
// If we're going to need to draw a non-opaque shadow.
// It's possible nsTextFrame will support non-opaque shadows in the future,
// in which case this test can be removed.
if (style->mFill.kind.IsColor() && aFrame->StyleText()->HasTextShadow() &&
NS_GET_A(style->mFill.kind.AsColor().CalcColor(*aFrame->Style())) !=
0xFF) {
return true;
}
// Text has a stroke.
if (style->HasStroke()) {
if (style->mStrokeWidth.IsContextValue()) {
return true;
}
if (SVGContentUtils::CoordToFloat(
static_cast<SVGElement*>(GetContent()),
style->mStrokeWidth.AsLengthPercentage()) > 0) {
return true;
}
}
return false;
}
void SVGTextFrame::ScheduleReflowSVG() {
if (HasAnyStateBits(NS_FRAME_IS_NONDISPLAY)) {
ScheduleReflowSVGNonDisplayText(
IntrinsicDirty::FrameAncestorsAndDescendants);
} else {
SVGUtils::ScheduleReflowSVG(this);
}
}
void SVGTextFrame::NotifyGlyphMetricsChange(bool aUpdateTextCorrespondence) {
if (aUpdateTextCorrespondence) {
AddStateBits(NS_STATE_SVG_TEXT_CORRESPONDENCE_DIRTY);
}
AddStateBits(NS_STATE_SVG_POSITIONING_DIRTY);
nsLayoutUtils::PostRestyleEvent(mContent->AsElement(), RestyleHint{0},
nsChangeHint_InvalidateRenderingObservers);
ScheduleReflowSVG();
}
void SVGTextFrame::UpdateGlyphPositioning() {
nsIFrame* kid = PrincipalChildList().FirstChild();
if (!kid) {
return;
}
if (HasAnyStateBits(NS_STATE_SVG_POSITIONING_DIRTY)) {
DoGlyphPositioning();
}
}
void SVGTextFrame::MaybeResolveBidiForAnonymousBlockChild() {
nsIFrame* kid = PrincipalChildList().FirstChild();
if (kid && kid->HasAnyStateBits(NS_BLOCK_NEEDS_BIDI_RESOLUTION) &&
PresContext()->BidiEnabled()) {
MOZ_ASSERT(static_cast<nsBlockFrame*>(do_QueryFrame(kid)),
"Expect anonymous child to be an nsBlockFrame");
nsBidiPresUtils::Resolve(static_cast<nsBlockFrame*>(kid));
}
}
void SVGTextFrame::MaybeReflowAnonymousBlockChild() {
nsIFrame* kid = PrincipalChildList().FirstChild();
if (!kid) {
return;
}
NS_ASSERTION(!kid->HasAnyStateBits(NS_FRAME_IN_REFLOW),
"should not be in reflow when about to reflow again");
if (IsSubtreeDirty()) {
if (HasAnyStateBits(NS_FRAME_IS_DIRTY)) {
// If we require a full reflow, ensure our kid is marked fully dirty.
// (Note that our anonymous nsBlockFrame is not an ISVGDisplayableFrame,
// so even when we are called via our ReflowSVG this will not be done for
// us by SVGDisplayContainerFrame::ReflowSVG.)
kid->MarkSubtreeDirty();
}
// The RecordCorrespondence and DoReflow calls can result in new text frames
// being created (due to bidi resolution or reflow). We set this bit to
// guard against unnecessarily calling back in to
// ScheduleReflowSVGNonDisplayText from nsIFrame::DidSetComputedStyle on
// those new text frames.
AddStateBits(NS_STATE_SVG_TEXT_IN_REFLOW);
TextNodeCorrespondenceRecorder::RecordCorrespondence(this);
MOZ_ASSERT(SVGUtils::AnyOuterSVGIsCallingReflowSVG(this),
"should be under ReflowSVG");
nsPresContext::InterruptPreventer noInterrupts(PresContext());
DoReflow();
RemoveStateBits(NS_STATE_SVG_TEXT_IN_REFLOW);
}
}
void SVGTextFrame::DoReflow() {
MOZ_ASSERT(HasAnyStateBits(NS_STATE_SVG_TEXT_IN_REFLOW));
// Since we are going to reflow the anonymous block frame, we will
// need to update mPositions.
// We also mark our text correspondence as dirty since we can end up needing
// reflow in ways that do not set NS_STATE_SVG_TEXT_CORRESPONDENCE_DIRTY.
// (We'd then fail the "expected a TextNodeCorrespondenceProperty" assertion
// when UpdateGlyphPositioning() is called after we return.)
AddStateBits(NS_STATE_SVG_TEXT_CORRESPONDENCE_DIRTY |
NS_STATE_SVG_POSITIONING_DIRTY);
if (HasAnyStateBits(NS_FRAME_IS_NONDISPLAY)) {
// Normally, these dirty flags would be cleared in ReflowSVG(), but that
// doesn't get called for non-display frames. We don't want to reflow our
// descendants every time SVGTextFrame::PaintSVG makes sure that we have
// valid positions by calling UpdateGlyphPositioning(), so we need to clear
// these dirty bits. Note that this also breaks an invalidation loop where
// our descendants invalidate as they reflow, which invalidates rendering
// observers, which reschedules the frame that is currently painting by
// will break that loop more convincingly at some point.
RemoveStateBits(NS_FRAME_IS_DIRTY | NS_FRAME_HAS_DIRTY_CHILDREN);
}
nsPresContext* presContext = PresContext();
nsIFrame* kid = PrincipalChildList().FirstChild();
if (!kid) {
return;
}
UniquePtr<gfxContext> renderingContext =
presContext->PresShell()->CreateReferenceRenderingContext();
if (UpdateFontSizeScaleFactor()) {
// If the font size scale factor changed, we need the block to report
// an updated preferred width.
kid->MarkIntrinsicISizesDirty();
}
const IntrinsicSizeInput input(renderingContext.get(), Nothing(), Nothing());
nscoord inlineSize = kid->GetPrefISize(input);
WritingMode wm = kid->GetWritingMode();
ReflowInput reflowInput(presContext, kid, renderingContext.get(),
LogicalSize(wm, inlineSize, NS_UNCONSTRAINEDSIZE));
ReflowOutput desiredSize(reflowInput);
nsReflowStatus status;
NS_ASSERTION(
reflowInput.ComputedPhysicalBorderPadding() == nsMargin(0, 0, 0, 0) &&
reflowInput.ComputedPhysicalMargin() == nsMargin(0, 0, 0, 0),
"style system should ensure that :-moz-svg-text "
"does not get styled");
kid->Reflow(presContext, desiredSize, reflowInput, status);
kid->DidReflow(presContext, &reflowInput);
kid->SetSize(wm, desiredSize.Size(wm));
}
// Usable font size range in devpixels / user-units
#define CLAMP_MIN_SIZE 8.0
#define CLAMP_MAX_SIZE 200.0
#define PRECISE_SIZE 200.0
bool SVGTextFrame::UpdateFontSizeScaleFactor() {
float contextScale = GetContextScale(this);
mLastContextScale = contextScale;
double oldFontSizeScaleFactor = mFontSizeScaleFactor;
bool geometricPrecision = false;
CSSCoord min = std::numeric_limits<float>::max();
CSSCoord max = std::numeric_limits<float>::min();
bool anyText = false;
// Find the minimum and maximum font sizes used over all the
// nsTextFrames.
TextFrameIterator it(this);
nsTextFrame* f = it.Current();
while (f) {
if (!geometricPrecision) {
// Unfortunately we can't treat text-rendering:geometricPrecision
// separately for each text frame.
geometricPrecision = f->StyleText()->mTextRendering ==
StyleTextRendering::Geometricprecision;
}
const auto& fontSize = f->StyleFont()->mFont.size;
if (!fontSize.IsZero()) {
min = std::min(min, fontSize.ToCSSPixels());
max = std::max(max, fontSize.ToCSSPixels());
anyText = true;
}
f = it.Next();
}
if (!anyText) {
// No text, so no need for scaling.
mFontSizeScaleFactor = 1.0;
return mFontSizeScaleFactor != oldFontSizeScaleFactor;
}
if (geometricPrecision) {
// We want to ensure minSize is scaled to PRECISE_SIZE.
mFontSizeScaleFactor = PRECISE_SIZE / min;
return mFontSizeScaleFactor != oldFontSizeScaleFactor;
}
double minTextRunSize = min * contextScale;
double maxTextRunSize = max * contextScale;
if (minTextRunSize >= CLAMP_MIN_SIZE && maxTextRunSize <= CLAMP_MAX_SIZE) {
// We are already in the ideal font size range for all text frames,
// so we only have to take into account the contextScale.
mFontSizeScaleFactor = contextScale;
} else if (max / min > CLAMP_MAX_SIZE / CLAMP_MIN_SIZE) {
// We can't scale the font sizes so that all of the text frames lie
// within our ideal font size range.
// Heuristically, if the maxTextRunSize is within the CLAMP_MAX_SIZE
// as a reasonable value, it's likely to be the user's intent to
// get a valid font for the maxTextRunSize one, we should honor it.
// The same for minTextRunSize.
if (maxTextRunSize <= CLAMP_MAX_SIZE) {
mFontSizeScaleFactor = CLAMP_MAX_SIZE / max;
} else if (minTextRunSize >= CLAMP_MIN_SIZE) {
mFontSizeScaleFactor = CLAMP_MIN_SIZE / min;
} else {
// So maxTextRunSize is too big, minTextRunSize is too small,
// we can't really do anything for this case, just leave it as is.
mFontSizeScaleFactor = contextScale;
}
} else if (minTextRunSize < CLAMP_MIN_SIZE) {
mFontSizeScaleFactor = CLAMP_MIN_SIZE / min;
} else {
mFontSizeScaleFactor = CLAMP_MAX_SIZE / max;
}
return mFontSizeScaleFactor != oldFontSizeScaleFactor;
}
double SVGTextFrame::GetFontSizeScaleFactor() const {
return mFontSizeScaleFactor;
}
/**
* Take aPoint, which is in the <text> element's user space, and convert
* it to the appropriate frame user space of aChildFrame according to
* which rendered run the point hits.
*/
Point SVGTextFrame::TransformFramePointToTextChild(
const Point& aPoint, const nsIFrame* aChildFrame) {
NS_ASSERTION(aChildFrame && nsLayoutUtils::GetClosestFrameOfType(
aChildFrame->GetParent(),
LayoutFrameType::SVGText) == this,
"aChildFrame must be a descendant of this frame");
UpdateGlyphPositioning();
nsPresContext* presContext = PresContext();
// Add in the mRect offset to aPoint, as that will have been taken into
// account when transforming the point from the ancestor frame down
// to this one.
float cssPxPerDevPx = nsPresContext::AppUnitsToFloatCSSPixels(
presContext->AppUnitsPerDevPixel());
float factor = AppUnitsPerCSSPixel();
Point framePosition(NSAppUnitsToFloatPixels(mRect.x, factor),
NSAppUnitsToFloatPixels(mRect.y, factor));
Point pointInUserSpace = aPoint * cssPxPerDevPx + framePosition;
// Find the closest rendered run for the text frames beneath aChildFrame.
TextRenderedRunIterator it(this, TextRenderedRunIterator::eAllFrames,
aChildFrame);
TextRenderedRun hit;
gfxPoint pointInRun;
nscoord dx = nscoord_MAX;
nscoord dy = nscoord_MAX;
for (TextRenderedRun run = it.Current(); run.mFrame; run = it.Next()) {
uint32_t flags = TextRenderedRun::eIncludeFill |
TextRenderedRun::eIncludeStroke |
TextRenderedRun::eNoHorizontalOverflow;
gfxRect runRect =
run.GetRunUserSpaceRect(presContext, flags).ToThebesRect();
gfxMatrix m = run.GetTransformFromRunUserSpaceToUserSpace(presContext);
if (!m.Invert()) {
return aPoint;
}
gfxPoint pointInRunUserSpace =
m.TransformPoint(ThebesPoint(pointInUserSpace));
if (Inside(runRect, pointInRunUserSpace)) {
// The point was inside the rendered run's rect, so we choose it.
dx = 0;
dy = 0;
pointInRun = pointInRunUserSpace;
hit = run;
} else if (nsLayoutUtils::PointIsCloserToRect(pointInRunUserSpace, runRect,
dx, dy)) {
// The point was closer to this rendered run's rect than any others
// we've seen so far.
pointInRun.x =
std::clamp(pointInRunUserSpace.x.value, runRect.X(), runRect.XMost());
pointInRun.y =
std::clamp(pointInRunUserSpace.y.value, runRect.Y(), runRect.YMost());
hit = run;
}
}
if (!hit.mFrame) {
// We didn't find any rendered runs for the frame.
return aPoint;
}
// Return the point in user units relative to the nsTextFrame,
// but taking into account mFontSizeScaleFactor.
gfxMatrix m = hit.GetTransformFromRunUserSpaceToFrameUserSpace(presContext);
m.PreScale(mFontSizeScaleFactor, mFontSizeScaleFactor);
return ToPoint(m.TransformPoint(pointInRun) / cssPxPerDevPx);
}
/**
* For each rendered run beneath aChildFrame, translate aRect from
* aChildFrame to the run's text frame, transform it then into
* the run's frame user space, intersect it with the run's
* frame user space rect, then transform it up to user space.
* The result is the union of all of these.
*/
gfxRect SVGTextFrame::TransformFrameRectFromTextChild(
const nsRect& aRect, const nsIFrame* aChildFrame) {
NS_ASSERTION(aChildFrame && nsLayoutUtils::GetClosestFrameOfType(
aChildFrame->GetParent(),
LayoutFrameType::SVGText) == this,
"aChildFrame must be a descendant of this frame");
UpdateGlyphPositioning();
nsPresContext* presContext = PresContext();
gfxRect result;
TextRenderedRunIterator it(this, TextRenderedRunIterator::eAllFrames,
aChildFrame);
for (TextRenderedRun run = it.Current(); run.mFrame; run = it.Next()) {
// First, translate aRect from aChildFrame to this run's frame.
nsRect rectInTextFrame = aRect + aChildFrame->GetOffsetTo(run.mFrame);
// Scale it into frame user space.
gfxRect rectInFrameUserSpace = AppUnitsToFloatCSSPixels(
gfxRect(rectInTextFrame.x, rectInTextFrame.y, rectInTextFrame.width,
rectInTextFrame.height),
presContext);
// Intersect it with the run.
uint32_t flags =
TextRenderedRun::eIncludeFill | TextRenderedRun::eIncludeStroke;
if (rectInFrameUserSpace.IntersectRect(
rectInFrameUserSpace,
run.GetFrameUserSpaceRect(presContext, flags).ToThebesRect())) {
// Transform it up to user space of the <text>
gfxMatrix m = run.GetTransformFromRunUserSpaceToUserSpace(presContext);
gfxRect rectInUserSpace = m.TransformRect(rectInFrameUserSpace);
// Union it into the result.
result.UnionRect(result, rectInUserSpace);
}
}
// Subtract the mRect offset from the result, as our user space for
// this frame is relative to the top-left of mRect.
float factor = AppUnitsPerCSSPixel();
gfxPoint framePosition(NSAppUnitsToFloatPixels(mRect.x, factor),
NSAppUnitsToFloatPixels(mRect.y, factor));
return result - framePosition;
}
Rect SVGTextFrame::TransformFrameRectFromTextChild(
const Rect& aRect, const nsIFrame* aChildFrame) {
nscoord appUnitsPerDevPixel = PresContext()->AppUnitsPerDevPixel();
nsRect r = LayoutDevicePixel::ToAppUnits(
LayoutDeviceRect::FromUnknownRect(aRect), appUnitsPerDevPixel);
gfxRect resultCssUnits = TransformFrameRectFromTextChild(r, aChildFrame);
float devPixelPerCSSPixel =
float(AppUnitsPerCSSPixel()) / appUnitsPerDevPixel;
resultCssUnits.Scale(devPixelPerCSSPixel);
return ToRect(resultCssUnits);
}
Point SVGTextFrame::TransformFramePointFromTextChild(
const Point& aPoint, const nsIFrame* aChildFrame) {
return TransformFrameRectFromTextChild(Rect(aPoint, Size(1, 1)), aChildFrame)
.TopLeft();
}
void SVGTextFrame::AppendDirectlyOwnedAnonBoxes(
nsTArray<OwnedAnonBox>& aResult) {
MOZ_ASSERT(PrincipalChildList().FirstChild(), "Must have our anon box");
aResult.AppendElement(OwnedAnonBox(PrincipalChildList().FirstChild()));
}
} // namespace mozilla