Source code

Revision control

Copy as Markdown

Other Tools

/* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
/* vim: set ts=8 sts=2 et sw=2 tw=80: */
/* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/. */
/* struct containing the input to nsIFrame::Reflow */
#include "mozilla/ReflowInput.h"
#include <algorithm>
#include "CounterStyleManager.h"
#include "LayoutLogging.h"
#include "mozilla/dom/HTMLInputElement.h"
#include "mozilla/ScrollContainerFrame.h"
#include "mozilla/WritingModes.h"
#include "nsBlockFrame.h"
#include "nsFlexContainerFrame.h"
#include "nsFontInflationData.h"
#include "nsFontMetrics.h"
#include "nsGkAtoms.h"
#include "nsGridContainerFrame.h"
#include "nsIContent.h"
#include "nsIFrame.h"
#include "nsIFrameInlines.h"
#include "nsImageFrame.h"
#include "nsIPercentBSizeObserver.h"
#include "nsLayoutUtils.h"
#include "nsLineBox.h"
#include "nsPresContext.h"
#include "nsStyleConsts.h"
#include "nsTableFrame.h"
#include "StickyScrollContainer.h"
using namespace mozilla;
using namespace mozilla::css;
using namespace mozilla::dom;
using namespace mozilla::layout;
static bool CheckNextInFlowParenthood(nsIFrame* aFrame, nsIFrame* aParent) {
nsIFrame* frameNext = aFrame->GetNextInFlow();
nsIFrame* parentNext = aParent->GetNextInFlow();
return frameNext && parentNext && frameNext->GetParent() == parentNext;
}
/**
* Adjusts the margin for a list (ol, ul), if necessary, depending on
* font inflation settings. Unfortunately, because bullets from a list are
* placed in the margin area, we only have ~40px in which to place the
* bullets. When they are inflated, however, this causes problems, since
* the text takes up more space than is available in the margin.
*
* This method will return a small amount (in app units) by which the
* margin can be adjusted, so that the space is available for list
* bullets to be rendered with font inflation enabled.
*/
static nscoord FontSizeInflationListMarginAdjustment(const nsIFrame* aFrame) {
// As an optimization we check this block frame specific bit up front before
// we even check if the frame is a block frame. That's only valid so long as
// we also have the `IsBlockFrameOrSubclass()` call below. Calling that is
// expensive though, and we want to avoid it if we know `HasMarker()` would
// return false.
if (!aFrame->HasAnyStateBits(NS_BLOCK_HAS_MARKER)) {
return 0;
}
// On desktop font inflation is disabled, so this will always early exit
// quickly, but checking the frame state bit is still quicker then this call
// and very likely to early exit on its own so we check this second.
float inflation = nsLayoutUtils::FontSizeInflationFor(aFrame);
if (inflation <= 1.0f) {
return 0;
}
if (!aFrame->IsBlockFrameOrSubclass()) {
return 0;
}
// We only want to adjust the margins if we're dealing with an ordered list.
// We already checked this above.
MOZ_ASSERT(static_cast<const nsBlockFrame*>(aFrame)->HasMarker());
const auto* list = aFrame->StyleList();
if (list->mListStyleType.IsNone()) {
return 0;
}
// The HTML spec states that the default padding for ordered lists
// begins at 40px, indicating that we have 40px of space to place a
// bullet. When performing font inflation calculations, we add space
// equivalent to this, but simply inflated at the same amount as the
// text, in app units.
auto margin = nsPresContext::CSSPixelsToAppUnits(40) * (inflation - 1);
if (!list->mListStyleType.IsName()) {
return margin;
}
nsAtom* type = list->mListStyleType.AsName().AsAtom();
if (type != nsGkAtoms::disc && type != nsGkAtoms::circle &&
type != nsGkAtoms::square && type != nsGkAtoms::disclosure_closed &&
type != nsGkAtoms::disclosure_open) {
return margin;
}
return 0;
}
SizeComputationInput::SizeComputationInput(nsIFrame* aFrame,
gfxContext* aRenderingContext)
: mFrame(aFrame),
mRenderingContext(aRenderingContext),
mWritingMode(aFrame->GetWritingMode()),
mIsThemed(aFrame->IsThemed()),
mComputedMargin(mWritingMode),
mComputedBorderPadding(mWritingMode),
mComputedPadding(mWritingMode) {
MOZ_ASSERT(mFrame);
}
SizeComputationInput::SizeComputationInput(
nsIFrame* aFrame, gfxContext* aRenderingContext,
WritingMode aContainingBlockWritingMode, nscoord aContainingBlockISize,
const Maybe<LogicalMargin>& aBorder, const Maybe<LogicalMargin>& aPadding)
: SizeComputationInput(aFrame, aRenderingContext) {
MOZ_ASSERT(!mFrame->IsTableColFrame());
InitOffsets(aContainingBlockWritingMode, aContainingBlockISize,
mFrame->Type(), {}, aBorder, aPadding);
}
// Initialize a <b>root</b> reflow input with a rendering context to
// use for measuring things.
ReflowInput::ReflowInput(nsPresContext* aPresContext, nsIFrame* aFrame,
gfxContext* aRenderingContext,
const LogicalSize& aAvailableSpace, InitFlags aFlags)
: SizeComputationInput(aFrame, aRenderingContext),
mAvailableSize(aAvailableSpace) {
MOZ_ASSERT(aRenderingContext, "no rendering context");
MOZ_ASSERT(aPresContext, "no pres context");
MOZ_ASSERT(aFrame, "no frame");
MOZ_ASSERT(aPresContext == aFrame->PresContext(), "wrong pres context");
if (aFlags.contains(InitFlag::DummyParentReflowInput)) {
mFlags.mDummyParentReflowInput = true;
}
if (aFlags.contains(InitFlag::StaticPosIsCBOrigin)) {
mFlags.mStaticPosIsCBOrigin = true;
}
if (!aFlags.contains(InitFlag::CallerWillInit)) {
Init(aPresContext);
}
// When we encounter a PageContent frame this will be set to true.
mFlags.mCanHaveClassABreakpoints = false;
}
// Initialize a reflow input for a child frame's reflow. Some state
// is copied from the parent reflow input; the remaining state is
// computed.
ReflowInput::ReflowInput(nsPresContext* aPresContext,
const ReflowInput& aParentReflowInput,
nsIFrame* aFrame, const LogicalSize& aAvailableSpace,
const Maybe<LogicalSize>& aContainingBlockSize,
InitFlags aFlags,
const StyleSizeOverrides& aSizeOverrides,
ComputeSizeFlags aComputeSizeFlags)
: SizeComputationInput(aFrame, aParentReflowInput.mRenderingContext),
mParentReflowInput(&aParentReflowInput),
mFloatManager(aParentReflowInput.mFloatManager),
mLineLayout(mFrame->IsLineParticipant() ? aParentReflowInput.mLineLayout
: nullptr),
mBreakType(aParentReflowInput.mBreakType),
mPercentBSizeObserver(
(aParentReflowInput.mPercentBSizeObserver &&
aParentReflowInput.mPercentBSizeObserver->NeedsToObserve(*this))
? aParentReflowInput.mPercentBSizeObserver
: nullptr),
mFlags(aParentReflowInput.mFlags),
mStyleSizeOverrides(aSizeOverrides),
mComputeSizeFlags(aComputeSizeFlags),
mReflowDepth(aParentReflowInput.mReflowDepth + 1),
mAvailableSize(aAvailableSpace) {
MOZ_ASSERT(aPresContext, "no pres context");
MOZ_ASSERT(aFrame, "no frame");
MOZ_ASSERT(aPresContext == aFrame->PresContext(), "wrong pres context");
MOZ_ASSERT(!mFlags.mSpecialBSizeReflow || !aFrame->IsSubtreeDirty(),
"frame should be clean when getting special bsize reflow");
if (mWritingMode.IsOrthogonalTo(aParentReflowInput.GetWritingMode())) {
// If we're setting up for an orthogonal flow, and the parent reflow input
// had a constrained ComputedBSize, we can use that as our AvailableISize
// in preference to leaving it unconstrained.
if (AvailableISize() == NS_UNCONSTRAINEDSIZE &&
aParentReflowInput.ComputedBSize() != NS_UNCONSTRAINEDSIZE) {
SetAvailableISize(aParentReflowInput.ComputedBSize());
}
}
// Note: mFlags was initialized as a copy of aParentReflowInput.mFlags up in
// this constructor's init list, so the only flags that we need to explicitly
// initialize here are those that may need a value other than our parent's.
mFlags.mNextInFlowUntouched =
aParentReflowInput.mFlags.mNextInFlowUntouched &&
CheckNextInFlowParenthood(aFrame, aParentReflowInput.mFrame);
mFlags.mAssumingHScrollbar = mFlags.mAssumingVScrollbar = false;
mFlags.mIsColumnBalancing = false;
mFlags.mColumnSetWrapperHasNoBSizeLeft = false;
mFlags.mTreatBSizeAsIndefinite = false;
mFlags.mDummyParentReflowInput = false;
mFlags.mStaticPosIsCBOrigin = aFlags.contains(InitFlag::StaticPosIsCBOrigin);
mFlags.mIOffsetsNeedCSSAlign = mFlags.mBOffsetsNeedCSSAlign = false;
// aPresContext->IsPaginated() and the named pages pref should have been
// checked when constructing the root ReflowInput.
if (aParentReflowInput.mFlags.mCanHaveClassABreakpoints) {
MOZ_ASSERT(aPresContext->IsPaginated(),
"mCanHaveClassABreakpoints set during non-paginated reflow.");
}
{
switch (mFrame->Type()) {
case LayoutFrameType::PageContent:
// PageContent requires paginated reflow.
MOZ_ASSERT(aPresContext->IsPaginated(),
"nsPageContentFrame should not be in non-paginated reflow");
MOZ_ASSERT(!mFlags.mCanHaveClassABreakpoints,
"mFlags.mCanHaveClassABreakpoints should have been "
"initalized to false before we found nsPageContentFrame");
mFlags.mCanHaveClassABreakpoints = true;
break;
case LayoutFrameType::Block: // FALLTHROUGH
case LayoutFrameType::Canvas: // FALLTHROUGH
case LayoutFrameType::FlexContainer: // FALLTHROUGH
case LayoutFrameType::GridContainer:
if (mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW)) {
// Never allow breakpoints inside of out-of-flow frames.
mFlags.mCanHaveClassABreakpoints = false;
break;
}
// This frame type can have class A breakpoints, inherit this flag
// from the parent (this is done for all flags during construction).
// This also includes Canvas frames, as each PageContent frame always
// has exactly one child which is a Canvas frame.
// Do NOT include the subclasses of BlockFrame here, as the ones for
// which this could be applicable (ColumnSetWrapper and the MathML
// frames) cannot have class A breakpoints.
MOZ_ASSERT(mFlags.mCanHaveClassABreakpoints ==
aParentReflowInput.mFlags.mCanHaveClassABreakpoints);
break;
default:
mFlags.mCanHaveClassABreakpoints = false;
break;
}
}
if (aFlags.contains(InitFlag::DummyParentReflowInput) ||
(mParentReflowInput->mFlags.mDummyParentReflowInput &&
mFrame->IsTableFrame())) {
mFlags.mDummyParentReflowInput = true;
}
if (!aFlags.contains(InitFlag::CallerWillInit)) {
Init(aPresContext, aContainingBlockSize);
}
}
template <typename SizeOrMaxSize>
nscoord SizeComputationInput::ComputeISizeValue(
const LogicalSize& aContainingBlockSize, StyleBoxSizing aBoxSizing,
const SizeOrMaxSize& aSize) const {
WritingMode wm = GetWritingMode();
const auto borderPadding = ComputedLogicalBorderPadding(wm);
const LogicalSize contentEdgeToBoxSizing =
aBoxSizing == StyleBoxSizing::Border ? borderPadding.Size(wm)
: LogicalSize(wm);
const nscoord boxSizingToMarginEdgeISize =
borderPadding.IStartEnd(wm) + ComputedLogicalMargin(wm).IStartEnd(wm) -
contentEdgeToBoxSizing.ISize(wm);
return mFrame
->ComputeISizeValue(mRenderingContext, wm, aContainingBlockSize,
contentEdgeToBoxSizing, boxSizingToMarginEdgeISize,
aSize, mFrame->StylePosition()->BSize(wm),
mFrame->GetAspectRatio())
.mISize;
}
nscoord SizeComputationInput::ComputeBSizeValue(
nscoord aContainingBlockBSize, StyleBoxSizing aBoxSizing,
const LengthPercentage& aSize) const {
WritingMode wm = GetWritingMode();
nscoord inside = 0;
if (aBoxSizing == StyleBoxSizing::Border) {
inside = ComputedLogicalBorderPadding(wm).BStartEnd(wm);
}
return nsLayoutUtils::ComputeBSizeValue(aContainingBlockBSize, inside, aSize);
}
WritingMode ReflowInput::GetCBWritingMode() const {
return mCBReflowInput ? mCBReflowInput->GetWritingMode()
: mFrame->GetContainingBlock()->GetWritingMode();
}
nsSize ReflowInput::ComputedSizeAsContainerIfConstrained() const {
LogicalSize size = ComputedSize();
if (size.ISize(mWritingMode) == NS_UNCONSTRAINEDSIZE) {
size.ISize(mWritingMode) = 0;
} else {
size.ISize(mWritingMode) += mComputedBorderPadding.IStartEnd(mWritingMode);
}
if (size.BSize(mWritingMode) == NS_UNCONSTRAINEDSIZE) {
size.BSize(mWritingMode) = 0;
} else {
size.BSize(mWritingMode) += mComputedBorderPadding.BStartEnd(mWritingMode);
}
return size.GetPhysicalSize(mWritingMode);
}
bool ReflowInput::ShouldReflowAllKids() const {
// Note that we could make a stronger optimization for IsBResize if
// we use it in a ShouldReflowChild test that replaces the current
// checks of NS_FRAME_IS_DIRTY | NS_FRAME_HAS_DIRTY_CHILDREN, if it
// were tested there along with NS_FRAME_CONTAINS_RELATIVE_BSIZE.
// This would need to be combined with a slight change in which
// frames NS_FRAME_CONTAINS_RELATIVE_BSIZE is marked on.
return mFrame->HasAnyStateBits(NS_FRAME_IS_DIRTY) || IsIResize() ||
(IsBResize() &&
mFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) ||
mFlags.mIsInLastColumnBalancingReflow;
}
void ReflowInput::SetComputedISize(nscoord aComputedISize,
ResetResizeFlags aFlags) {
// It'd be nice to assert that |frame| is not in reflow, but this fails
// because viewport frames reset the computed isize on a copy of their reflow
// input when reflowing fixed-pos kids. In that case we actually don't want
// to mess with the resize flags, because comparing the frame's rect to the
// munged computed isize is pointless.
NS_WARNING_ASSERTION(aComputedISize >= 0, "Invalid computed inline-size!");
if (ComputedISize() != aComputedISize) {
mComputedSize.ISize(mWritingMode) = std::max(0, aComputedISize);
if (aFlags == ResetResizeFlags::Yes) {
InitResizeFlags(mFrame->PresContext(), mFrame->Type());
}
}
}
void ReflowInput::SetComputedBSize(nscoord aComputedBSize,
ResetResizeFlags aFlags) {
// It'd be nice to assert that |frame| is not in reflow, but this fails
// for the same reason as above.
NS_WARNING_ASSERTION(aComputedBSize >= 0, "Invalid computed block-size!");
if (ComputedBSize() != aComputedBSize) {
mComputedSize.BSize(mWritingMode) = std::max(0, aComputedBSize);
if (aFlags == ResetResizeFlags::Yes) {
InitResizeFlags(mFrame->PresContext(), mFrame->Type());
}
}
}
void ReflowInput::Init(nsPresContext* aPresContext,
const Maybe<LogicalSize>& aContainingBlockSize,
const Maybe<LogicalMargin>& aBorder,
const Maybe<LogicalMargin>& aPadding) {
if (AvailableISize() == NS_UNCONSTRAINEDSIZE) {
// Look up the parent chain for an orthogonal inline limit,
// and reset AvailableISize() if found.
for (const ReflowInput* parent = mParentReflowInput; parent != nullptr;
parent = parent->mParentReflowInput) {
if (parent->GetWritingMode().IsOrthogonalTo(mWritingMode) &&
parent->mOrthogonalLimit != NS_UNCONSTRAINEDSIZE) {
SetAvailableISize(parent->mOrthogonalLimit);
break;
}
}
}
LAYOUT_WARN_IF_FALSE(AvailableISize() != NS_UNCONSTRAINEDSIZE,
"have unconstrained inline-size; this should only "
"result from very large sizes, not attempts at "
"intrinsic inline-size calculation");
mStylePosition = mFrame->StylePosition();
mStyleDisplay = mFrame->StyleDisplay();
mStyleBorder = mFrame->StyleBorder();
mStyleMargin = mFrame->StyleMargin();
InitCBReflowInput();
LayoutFrameType type = mFrame->Type();
if (type == LayoutFrameType::Placeholder) {
// Placeholders have a no-op Reflow method that doesn't need the rest of
// this initialization, so we bail out early.
mComputedSize.SizeTo(mWritingMode, 0, 0);
return;
}
mFlags.mIsReplaced = mFrame->IsReplaced();
InitConstraints(aPresContext, aContainingBlockSize, aBorder, aPadding, type);
InitResizeFlags(aPresContext, type);
InitDynamicReflowRoot();
nsIFrame* parent = mFrame->GetParent();
if (parent && parent->HasAnyStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE) &&
!(parent->IsScrollContainerFrame() &&
parent->StyleDisplay()->mOverflowY != StyleOverflow::Hidden)) {
mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
} else if (type == LayoutFrameType::SVGForeignObject) {
// An SVG foreignObject frame is inherently constrained block-size.
mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
} else {
const auto& bSizeCoord = mStylePosition->BSize(mWritingMode);
const auto& maxBSizeCoord = mStylePosition->MaxBSize(mWritingMode);
if ((!bSizeCoord.BehavesLikeInitialValueOnBlockAxis() ||
!maxBSizeCoord.BehavesLikeInitialValueOnBlockAxis()) &&
// Don't set NS_FRAME_IN_CONSTRAINED_BSIZE on body or html elements.
(mFrame->GetContent() && !(mFrame->GetContent()->IsAnyOfHTMLElements(
nsGkAtoms::body, nsGkAtoms::html)))) {
// If our block-size was specified as a percentage, then this could
// actually resolve to 'auto', based on:
nsIFrame* containingBlk = mFrame;
while (containingBlk) {
const nsStylePosition* stylePos = containingBlk->StylePosition();
const auto& bSizeCoord = stylePos->BSize(mWritingMode);
const auto& maxBSizeCoord = stylePos->MaxBSize(mWritingMode);
if ((bSizeCoord.IsLengthPercentage() && !bSizeCoord.HasPercent()) ||
(maxBSizeCoord.IsLengthPercentage() &&
!maxBSizeCoord.HasPercent())) {
mFrame->AddStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
break;
} else if (bSizeCoord.HasPercent() || maxBSizeCoord.HasPercent()) {
if (!(containingBlk = containingBlk->GetContainingBlock())) {
// If we've reached the top of the tree, then we don't have
// a constrained block-size.
mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
break;
}
continue;
} else {
mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
break;
}
}
} else {
mFrame->RemoveStateBits(NS_FRAME_IN_CONSTRAINED_BSIZE);
}
}
if (mParentReflowInput &&
mParentReflowInput->GetWritingMode().IsOrthogonalTo(mWritingMode)) {
// Orthogonal frames are always reflowed with an unconstrained
// dimension to avoid incomplete reflow across an orthogonal
// boundary. Normally this is the block-size, but for column sets
// with auto-height it's the inline-size, so that they can add
// columns in the container's block direction
if (type == LayoutFrameType::ColumnSet &&
mStylePosition->ISize(mWritingMode).IsAuto()) {
SetComputedISize(NS_UNCONSTRAINEDSIZE, ResetResizeFlags::No);
} else {
SetAvailableBSize(NS_UNCONSTRAINEDSIZE);
}
}
if (mFrame->GetContainSizeAxes().mBContained) {
// In the case that a box is size contained in block axis, we want to ensure
// that it is also monolithic. We do this by setting AvailableBSize() to an
// unconstrained size to avoid fragmentation.
SetAvailableBSize(NS_UNCONSTRAINEDSIZE);
}
LAYOUT_WARN_IF_FALSE(
(mStyleDisplay->IsInlineOutsideStyle() && !mFrame->IsReplaced()) ||
type == LayoutFrameType::Text ||
ComputedISize() != NS_UNCONSTRAINEDSIZE,
"have unconstrained inline-size; this should only "
"result from very large sizes, not attempts at "
"intrinsic inline-size calculation");
}
static bool MightBeContainingBlockFor(nsIFrame* aMaybeContainingBlock,
nsIFrame* aFrame,
const nsStyleDisplay* aStyleDisplay) {
// Keep this in sync with nsIFrame::GetContainingBlock.
if (aFrame->IsAbsolutelyPositioned(aStyleDisplay) &&
aMaybeContainingBlock == aFrame->GetParent()) {
return true;
}
return aMaybeContainingBlock->IsBlockContainer();
}
void ReflowInput::InitCBReflowInput() {
if (!mParentReflowInput) {
mCBReflowInput = nullptr;
return;
}
if (mParentReflowInput->mFlags.mDummyParentReflowInput) {
mCBReflowInput = mParentReflowInput;
return;
}
// To avoid a long walk up the frame tree check if the parent frame can be a
// containing block for mFrame.
if (MightBeContainingBlockFor(mParentReflowInput->mFrame, mFrame,
mStyleDisplay) &&
mParentReflowInput->mFrame ==
mFrame->GetContainingBlock(0, mStyleDisplay)) {
// Inner table frames need to use the containing block of the outer
// table frame.
if (mFrame->IsTableFrame()) {
mCBReflowInput = mParentReflowInput->mCBReflowInput;
} else {
mCBReflowInput = mParentReflowInput;
}
} else {
mCBReflowInput = mParentReflowInput->mCBReflowInput;
}
}
/* Check whether CalcQuirkContainingBlockHeight would stop on the
* given reflow input, using its block as a height. (essentially
* returns false for any case in which CalcQuirkContainingBlockHeight
* has a "continue" in its main loop.)
*
* XXX Maybe refactor CalcQuirkContainingBlockHeight so it uses
* this function as well
*/
static bool IsQuirkContainingBlockHeight(const ReflowInput* rs,
LayoutFrameType aFrameType) {
if (LayoutFrameType::Block == aFrameType ||
LayoutFrameType::ScrollContainer == aFrameType) {
// Note: This next condition could change due to a style change,
// but that would cause a style reflow anyway, which means we're ok.
if (NS_UNCONSTRAINEDSIZE == rs->ComputedHeight()) {
if (!rs->mFrame->IsAbsolutelyPositioned(rs->mStyleDisplay)) {
return false;
}
}
}
return true;
}
void ReflowInput::InitResizeFlags(nsPresContext* aPresContext,
LayoutFrameType aFrameType) {
SetIResize(false);
SetBResize(false);
SetBResizeForPercentages(false);
const WritingMode wm = mWritingMode; // just a shorthand
// We should report that we have a resize in the inline dimension if
// *either* the border-box size or the content-box size in that
// dimension has changed. It might not actually be necessary to do
// this if the border-box size has changed and the content-box size
// has not changed, but since we've historically used the flag to mean
// border-box size change, continue to do that. It's possible for
// the content-box size to change without a border-box size change or
// a style change given (1) a fixed width (possibly fixed by max-width
// or min-width), box-sizing:border-box, and percentage padding;
// (2) box-sizing:content-box, M% width, and calc(Npx - M%) padding.
//
// However, we don't actually have the information at this point to tell
// whether the content-box size has changed, since both style data and the
// UsedPaddingProperty() have already been updated in
// SizeComputationInput::InitOffsets(). So, we check the HasPaddingChange()
// bit for the cases where it's possible for the content-box size to have
// changed without either (a) a change in the border-box size or (b) an
// nsChangeHint_NeedDirtyReflow change hint due to change in border or
// padding.
//
// We don't clear the HasPaddingChange() bit here, since sometimes we
// construct reflow input (e.g. in nsBlockFrame::ReflowBlockFrame to compute
// margin collapsing) without reflowing the frame. Instead, we clear it in
// nsIFrame::DidReflow().
bool isIResize =
// is the border-box resizing?
mFrame->ISize(wm) !=
ComputedISize() + ComputedLogicalBorderPadding(wm).IStartEnd(wm) ||
// or is the content-box resizing? (see comment above)
mFrame->HasPaddingChange();
if (mFrame->HasAnyStateBits(NS_FRAME_FONT_INFLATION_FLOW_ROOT) &&
nsLayoutUtils::FontSizeInflationEnabled(aPresContext)) {
// Create our font inflation data if we don't have it already, and
// give it our current width information.
bool dirty = nsFontInflationData::UpdateFontInflationDataISizeFor(*this) &&
// Avoid running this at the box-to-block interface
// (where we shouldn't be inflating anyway, and where
// reflow input construction is probably to construct a
// dummy parent reflow input anyway).
!mFlags.mDummyParentReflowInput;
if (dirty || (!mFrame->GetParent() && isIResize)) {
// When font size inflation is enabled, a change in either:
// * the effective width of a font inflation flow root
// * the width of the frame
// needs to cause a dirty reflow since they change the font size
// inflation calculations, which in turn change the size of text,
// line-heights, etc. This is relatively similar to a classic
// case of style change reflow, except that because inflation
// doesn't affect the intrinsic sizing codepath, there's no need
// to invalidate intrinsic sizes.
//
// Note that this makes horizontal resizing a good bit more
// expensive. However, font size inflation is targeted at a set of
// devices (zoom-and-pan devices) where the main use case for
// horizontal resizing needing to be efficient (window resizing) is
// not present. It does still increase the cost of dynamic changes
// caused by script where a style or content change in one place
// causes a resize in another (e.g., rebalancing a table).
// FIXME: This isn't so great for the cases where
// ReflowInput::SetComputedWidth is called, if the first time
// we go through InitResizeFlags we set IsHResize() to true, and then
// the second time we'd set it to false even without the
// NS_FRAME_IS_DIRTY bit already set.
if (mFrame->IsSVGForeignObjectFrame()) {
// Foreign object frames use dirty bits in a special way.
mFrame->AddStateBits(NS_FRAME_HAS_DIRTY_CHILDREN);
nsIFrame* kid = mFrame->PrincipalChildList().FirstChild();
if (kid) {
kid->MarkSubtreeDirty();
}
} else {
mFrame->MarkSubtreeDirty();
}
// Mark intrinsic widths on all descendants dirty. We need to do
// this (1) since we're changing the size of text and need to
// clear text runs on text frames and (2) since we actually are
// changing some intrinsic widths, but only those that live inside
// of containers.
// It makes sense to do this for descendants but not ancestors
// (which is unusual) because we're only changing the unusual
// inflation-dependent intrinsic widths (i.e., ones computed with
// nsPresContext::mInflationDisabledForShrinkWrap set to false),
// which should never affect anything outside of their inflation
// flow root (or, for that matter, even their inflation
// container).
// This is also different from what PresShell::FrameNeedsReflow
// does because it doesn't go through placeholders. It doesn't
// need to because we're actually doing something that cares about
// frame tree geometry (the width on an ancestor) rather than
// style.
AutoTArray<nsIFrame*, 32> stack;
stack.AppendElement(mFrame);
do {
nsIFrame* f = stack.PopLastElement();
for (const auto& childList : f->ChildLists()) {
for (nsIFrame* kid : childList.mList) {
kid->MarkIntrinsicISizesDirty();
stack.AppendElement(kid);
}
}
} while (stack.Length() != 0);
}
}
SetIResize(!mFrame->HasAnyStateBits(NS_FRAME_IS_DIRTY) && isIResize);
// XXX Should we really need to null check mCBReflowInput? (We do for
// at least nsBoxFrame).
if (mFrame->HasBSizeChange()) {
// When we have an nsChangeHint_UpdateComputedBSize, we'll set a bit
// on the frame to indicate we're resizing. This might catch cases,
// such as a change between auto and a length, where the box doesn't
// actually resize but children with percentages resize (since those
// percentages become auto if their containing block is auto).
SetBResize(true);
SetBResizeForPercentages(true);
// We don't clear the HasBSizeChange state here, since sometimes we
// construct a ReflowInput (e.g. in nsBlockFrame::ReflowBlockFrame to
// compute margin collapsing) without reflowing the frame. Instead, we
// clear it in nsIFrame::DidReflow.
} else if (mCBReflowInput &&
mCBReflowInput->IsBResizeForPercentagesForWM(wm) &&
(mStylePosition->BSize(wm).HasPercent() ||
mStylePosition->MinBSize(wm).HasPercent() ||
mStylePosition->MaxBSize(wm).HasPercent())) {
// We have a percentage (or calc-with-percentage) block-size, and the
// value it's relative to has changed.
SetBResize(true);
SetBResizeForPercentages(true);
} else if (aFrameType == LayoutFrameType::TableCell &&
(mFlags.mSpecialBSizeReflow ||
mFrame->FirstInFlow()->HasAnyStateBits(
NS_TABLE_CELL_HAD_SPECIAL_REFLOW)) &&
mFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
// Need to set the bit on the cell so that
// mCBReflowInput->IsBResize() is set correctly below when
// reflowing descendant.
SetBResize(true);
SetBResizeForPercentages(true);
} else if (mCBReflowInput && mFrame->IsBlockWrapper()) {
// XXX Is this problematic for relatively positioned inlines acting
// as containing block for absolutely positioned elements?
// Possibly; in that case we should at least be checking
// IsSubtreeDirty(), I'd think.
SetBResize(mCBReflowInput->IsBResizeForWM(wm));
SetBResizeForPercentages(mCBReflowInput->IsBResizeForPercentagesForWM(wm));
} else if (ComputedBSize() == NS_UNCONSTRAINEDSIZE) {
// We have an 'auto' block-size.
if (eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
mCBReflowInput) {
// FIXME: This should probably also check IsIResize().
SetBResize(mCBReflowInput->IsBResizeForWM(wm));
} else {
SetBResize(IsIResize());
}
SetBResize(IsBResize() || mFrame->IsSubtreeDirty());
} else {
// We have a non-'auto' block-size, i.e., a length. Set the BResize
// flag to whether the size is actually different.
SetBResize(mFrame->BSize(wm) !=
ComputedBSize() +
ComputedLogicalBorderPadding(wm).BStartEnd(wm));
}
bool dependsOnCBBSize =
(mStylePosition->BSizeDependsOnContainer(wm) &&
// FIXME: condition this on not-abspos?
!mStylePosition->BSize(wm).IsAuto()) ||
mStylePosition->MinBSizeDependsOnContainer(wm) ||
mStylePosition->MaxBSizeDependsOnContainer(wm) ||
mStylePosition->GetInset(LogicalSide::BStart, wm).HasPercent() ||
!mStylePosition->GetInset(LogicalSide::BEnd, wm).IsAuto();
// If mFrame is a flex item, and mFrame's block axis is the flex container's
// main axis (e.g. in a column-oriented flex container with same
// writing-mode), then its block-size depends on its CB size, if its
// flex-basis has a percentage.
if (mFrame->IsFlexItem() &&
!nsFlexContainerFrame::IsItemInlineAxisMainAxis(mFrame)) {
const auto& flexBasis = mStylePosition->mFlexBasis;
dependsOnCBBSize |= (flexBasis.IsSize() && flexBasis.AsSize().HasPercent());
}
if (mFrame->StyleFont()->mLineHeight.IsMozBlockHeight()) {
// line-height depends on block bsize
mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
// but only on containing blocks if this frame is not a suitable block
dependsOnCBBSize |= !nsLayoutUtils::IsNonWrapperBlock(mFrame);
}
// If we're the descendant of a table cell that performs special bsize
// reflows and we could be the child that requires them, always set
// the block-axis resize in case this is the first pass before the
// special bsize reflow. However, don't do this if it actually is
// the special bsize reflow, since in that case it will already be
// set correctly above if we need it set.
if (!IsBResize() && mCBReflowInput &&
(mCBReflowInput->mFrame->IsTableCellFrame() ||
mCBReflowInput->mFlags.mHeightDependsOnAncestorCell) &&
!mCBReflowInput->mFlags.mSpecialBSizeReflow && dependsOnCBBSize) {
SetBResize(true);
mFlags.mHeightDependsOnAncestorCell = true;
}
// Set NS_FRAME_CONTAINS_RELATIVE_BSIZE if it's needed.
// It would be nice to check that |ComputedBSize != NS_UNCONSTRAINEDSIZE|
// &&ed with the percentage bsize check. However, this doesn't get
// along with table special bsize reflows, since a special bsize
// reflow (a quirk that makes such percentage height work on children
// of table cells) can cause not just a single percentage height to
// become fixed, but an entire descendant chain of percentage height
// to become fixed.
if (dependsOnCBBSize && mCBReflowInput) {
const ReflowInput* rs = this;
bool hitCBReflowInput = false;
do {
rs = rs->mParentReflowInput;
if (!rs) {
break;
}
if (rs->mFrame->HasAnyStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE)) {
break; // no need to go further
}
rs->mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
// Keep track of whether we've hit the containing block, because
// we need to go at least that far.
if (rs == mCBReflowInput) {
hitCBReflowInput = true;
}
// XXX What about orthogonal flows? It doesn't make sense to
// keep propagating this bit across an orthogonal boundary,
// where the meaning of BSize changes. Bug 1175517.
} while (!hitCBReflowInput ||
(eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
!IsQuirkContainingBlockHeight(rs, rs->mFrame->Type())));
// Note: We actually don't need to set the
// NS_FRAME_CONTAINS_RELATIVE_BSIZE bit for the cases
// where we hit the early break statements in
// CalcQuirkContainingBlockHeight. But it doesn't hurt
// us to set the bit in these cases.
}
if (mFrame->HasAnyStateBits(NS_FRAME_IS_DIRTY)) {
// If we're reflowing everything, then we'll find out if we need
// to re-set this.
mFrame->RemoveStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
}
}
void ReflowInput::InitDynamicReflowRoot() {
if (mFrame->CanBeDynamicReflowRoot()) {
mFrame->AddStateBits(NS_FRAME_DYNAMIC_REFLOW_ROOT);
} else {
mFrame->RemoveStateBits(NS_FRAME_DYNAMIC_REFLOW_ROOT);
}
}
bool ReflowInput::ShouldApplyAutomaticMinimumOnBlockAxis() const {
MOZ_ASSERT(!mFrame->HasReplacedSizing());
return mFlags.mIsBSizeSetByAspectRatio &&
!mStyleDisplay->IsScrollableOverflow() &&
mStylePosition->MinBSize(GetWritingMode()).IsAuto();
}
bool ReflowInput::IsInFragmentedContext() const {
// We consider mFrame with a prev-in-flow being in a fragmented context
// because nsColumnSetFrame can reflow its last column with an unconstrained
// available block-size.
return AvailableBSize() != NS_UNCONSTRAINEDSIZE || mFrame->GetPrevInFlow();
}
/* static */
LogicalMargin ReflowInput::ComputeRelativeOffsets(WritingMode aWM,
nsIFrame* aFrame,
const LogicalSize& aCBSize) {
LogicalMargin offsets(aWM);
const nsStylePosition* position = aFrame->StylePosition();
// Compute the 'inlineStart' and 'inlineEnd' values. 'inlineStart'
// moves the boxes to the end of the line, and 'inlineEnd' moves the
// boxes to the start of the line. The computed values are always:
// inlineStart=-inlineEnd
const auto& inlineStart = position->GetInset(LogicalSide::IStart, aWM);
const auto& inlineEnd = position->GetInset(LogicalSide::IEnd, aWM);
bool inlineStartIsAuto = !inlineStart.IsLengthPercentage();
bool inlineEndIsAuto = !inlineEnd.IsLengthPercentage();
// If neither 'inlineStart' nor 'inlineEnd' is auto, then we're
// over-constrained and we ignore one of them
if (!inlineStartIsAuto && !inlineEndIsAuto) {
inlineEndIsAuto = true;
}
if (inlineStartIsAuto) {
if (inlineEndIsAuto) {
// If both are 'auto' (their initial values), the computed values are 0
offsets.IStart(aWM) = offsets.IEnd(aWM) = 0;
} else {
// 'inlineEnd' isn't 'auto' so compute its value
offsets.IEnd(aWM) =
nsLayoutUtils::ComputeCBDependentValue(aCBSize.ISize(aWM), inlineEnd);
// Computed value for 'inlineStart' is minus the value of 'inlineEnd'
offsets.IStart(aWM) = -offsets.IEnd(aWM);
}
} else {
NS_ASSERTION(inlineEndIsAuto, "unexpected specified constraint");
// 'InlineStart' isn't 'auto' so compute its value
offsets.IStart(aWM) =
nsLayoutUtils::ComputeCBDependentValue(aCBSize.ISize(aWM), inlineStart);
// Computed value for 'inlineEnd' is minus the value of 'inlineStart'
offsets.IEnd(aWM) = -offsets.IStart(aWM);
}
// Compute the 'blockStart' and 'blockEnd' values. The 'blockStart'
// and 'blockEnd' properties move relatively positioned elements in
// the block progression direction. They also must be each other's
// negative
const auto& blockStart = position->GetInset(LogicalSide::BStart, aWM);
const auto& blockEnd = position->GetInset(LogicalSide::BEnd, aWM);
bool blockStartIsAuto = blockStart.IsAuto();
bool blockEndIsAuto = blockEnd.IsAuto();
// Check for percentage based values and a containing block block-size
// that depends on the content block-size. Treat them like 'auto'
if (NS_UNCONSTRAINEDSIZE == aCBSize.BSize(aWM)) {
if (blockStart.HasPercent()) {
blockStartIsAuto = true;
}
if (blockEnd.HasPercent()) {
blockEndIsAuto = true;
}
}
// If neither is 'auto', 'block-end' is ignored
if (!blockStartIsAuto && !blockEndIsAuto) {
blockEndIsAuto = true;
}
if (blockStartIsAuto) {
if (blockEndIsAuto) {
// If both are 'auto' (their initial values), the computed values are 0
offsets.BStart(aWM) = offsets.BEnd(aWM) = 0;
} else {
// 'blockEnd' isn't 'auto' so compute its value
offsets.BEnd(aWM) =
nsLayoutUtils::ComputeCBDependentValue(aCBSize.BSize(aWM), blockEnd);
// Computed value for 'blockStart' is minus the value of 'blockEnd'
offsets.BStart(aWM) = -offsets.BEnd(aWM);
}
} else {
NS_ASSERTION(blockEndIsAuto, "unexpected specified constraint");
// 'blockStart' isn't 'auto' so compute its value
offsets.BStart(aWM) =
nsLayoutUtils::ComputeCBDependentValue(aCBSize.BSize(aWM), blockStart);
// Computed value for 'blockEnd' is minus the value of 'blockStart'
offsets.BEnd(aWM) = -offsets.BStart(aWM);
}
// Convert the offsets to physical coordinates and store them on the frame
const nsMargin physicalOffsets = offsets.GetPhysicalMargin(aWM);
if (nsMargin* prop =
aFrame->GetProperty(nsIFrame::ComputedOffsetProperty())) {
*prop = physicalOffsets;
} else {
aFrame->AddProperty(nsIFrame::ComputedOffsetProperty(),
new nsMargin(physicalOffsets));
}
NS_ASSERTION(offsets.IStart(aWM) == -offsets.IEnd(aWM) &&
offsets.BStart(aWM) == -offsets.BEnd(aWM),
"ComputeRelativeOffsets should return valid results!");
return offsets;
}
/* static */
void ReflowInput::ApplyRelativePositioning(nsIFrame* aFrame,
const nsMargin& aComputedOffsets,
nsPoint* aPosition) {
if (!aFrame->IsRelativelyOrStickyPositioned()) {
NS_ASSERTION(!aFrame->HasProperty(nsIFrame::NormalPositionProperty()),
"We assume that changing the 'position' property causes "
"frame reconstruction. If that ever changes, this code "
"should call "
"aFrame->RemoveProperty(nsIFrame::NormalPositionProperty())");
return;
}
// Store the normal position
aFrame->SetProperty(nsIFrame::NormalPositionProperty(), *aPosition);
const nsStyleDisplay* display = aFrame->StyleDisplay();
if (StylePositionProperty::Relative == display->mPosition) {
*aPosition += nsPoint(aComputedOffsets.left, aComputedOffsets.top);
}
// For sticky positioned elements, we'll leave them until the scroll container
// reflows and calls StickyScrollContainer::UpdatePositions() to update their
// positions.
}
// static
void ReflowInput::ComputeAbsPosInlineAutoMargin(nscoord aAvailMarginSpace,
WritingMode aContainingBlockWM,
bool aIsMarginIStartAuto,
bool aIsMarginIEndAuto,
LogicalMargin& aMargin,
LogicalMargin& aOffsets) {
if (aIsMarginIStartAuto) {
if (aIsMarginIEndAuto) {
if (aAvailMarginSpace < 0) {
// Note that this case is different from the neither-'auto'
// case below, where the spec says to ignore 'left'/'right'.
// Ignore the specified value for 'margin-right'.
aMargin.IEnd(aContainingBlockWM) = aAvailMarginSpace;
} else {
// Both 'margin-left' and 'margin-right' are 'auto', so they get
// equal values
aMargin.IStart(aContainingBlockWM) = aAvailMarginSpace / 2;
aMargin.IEnd(aContainingBlockWM) =
aAvailMarginSpace - aMargin.IStart(aContainingBlockWM);
}
} else {
// Just 'margin-left' is 'auto'
aMargin.IStart(aContainingBlockWM) = aAvailMarginSpace;
}
} else {
if (aIsMarginIEndAuto) {
// Just 'margin-right' is 'auto'
aMargin.IEnd(aContainingBlockWM) = aAvailMarginSpace;
}
// Else, both margins are non-auto. This margin box would align to the
// inset-reduced containing block, so it's not overconstrained.
}
}
// static
void ReflowInput::ComputeAbsPosBlockAutoMargin(nscoord aAvailMarginSpace,
WritingMode aContainingBlockWM,
bool aIsMarginBStartAuto,
bool aIsMarginBEndAuto,
LogicalMargin& aMargin,
LogicalMargin& aOffsets) {
if (aIsMarginBStartAuto) {
if (aIsMarginBEndAuto) {
// Both 'margin-top' and 'margin-bottom' are 'auto', so they get
// equal values
aMargin.BStart(aContainingBlockWM) = aAvailMarginSpace / 2;
aMargin.BEnd(aContainingBlockWM) =
aAvailMarginSpace - aMargin.BStart(aContainingBlockWM);
} else {
// Just margin-block-start is 'auto'
aMargin.BStart(aContainingBlockWM) = aAvailMarginSpace;
}
} else {
if (aIsMarginBEndAuto) {
// Just margin-block-end is 'auto'
aMargin.BEnd(aContainingBlockWM) = aAvailMarginSpace;
}
// Else, both margins are non-auto. See comment in the inline version.
}
}
void ReflowInput::ApplyRelativePositioning(
nsIFrame* aFrame, WritingMode aWritingMode,
const LogicalMargin& aComputedOffsets, LogicalPoint* aPosition,
const nsSize& aContainerSize) {
// Subtract the size of the frame from the container size that we
// use for converting between the logical and physical origins of
// the frame. This accounts for the fact that logical origins in RTL
// coordinate systems are at the top right of the frame instead of
// the top left.
nsSize frameSize = aFrame->GetSize();
nsPoint pos =
aPosition->GetPhysicalPoint(aWritingMode, aContainerSize - frameSize);
ApplyRelativePositioning(
aFrame, aComputedOffsets.GetPhysicalMargin(aWritingMode), &pos);
*aPosition = LogicalPoint(aWritingMode, pos, aContainerSize - frameSize);
}
nsIFrame* ReflowInput::GetHypotheticalBoxContainer(nsIFrame* aFrame,
nscoord& aCBIStartEdge,
LogicalSize& aCBSize) const {
aFrame = aFrame->GetContainingBlock();
NS_ASSERTION(aFrame != mFrame, "How did that happen?");
/* Now aFrame is the containing block we want */
/* Check whether the containing block is currently being reflowed.
If so, use the info from the reflow input. */
const ReflowInput* reflowInput;
if (aFrame->HasAnyStateBits(NS_FRAME_IN_REFLOW)) {
for (reflowInput = mParentReflowInput;
reflowInput && reflowInput->mFrame != aFrame;
reflowInput = reflowInput->mParentReflowInput) {
/* do nothing */
}
} else {
reflowInput = nullptr;
}
if (reflowInput) {
WritingMode wm = reflowInput->GetWritingMode();
NS_ASSERTION(wm == aFrame->GetWritingMode(), "unexpected writing mode");
aCBIStartEdge = reflowInput->ComputedLogicalBorderPadding(wm).IStart(wm);
aCBSize = reflowInput->ComputedSize(wm);
} else {
/* Didn't find a reflow reflowInput for aFrame. Just compute the
information we want, on the assumption that aFrame already knows its
size. This really ought to be true by now. */
NS_ASSERTION(!aFrame->HasAnyStateBits(NS_FRAME_IN_REFLOW),
"aFrame shouldn't be in reflow; we'll lie if it is");
WritingMode wm = aFrame->GetWritingMode();
// Compute CB's offset & content-box size by subtracting borderpadding from
// frame size.
const auto& bp = aFrame->GetLogicalUsedBorderAndPadding(wm);
aCBIStartEdge = bp.IStart(wm);
aCBSize = aFrame->GetLogicalSize(wm) - bp.Size(wm);
}
return aFrame;
}
struct nsHypotheticalPosition {
// offset from inline-start edge of containing block (which is a padding edge)
nscoord mIStart = 0;
// offset from block-start edge of containing block (which is a padding edge)
nscoord mBStart = 0;
WritingMode mWritingMode;
};
/**
* aInsideBoxSizing returns the part of the padding, border, and margin
* in the aAxis dimension that goes inside the edge given by box-sizing;
* aOutsideBoxSizing returns the rest.
*/
void ReflowInput::CalculateBorderPaddingMargin(
LogicalAxis aAxis, nscoord aContainingBlockSize, nscoord* aInsideBoxSizing,
nscoord* aOutsideBoxSizing) const {
WritingMode wm = GetWritingMode();
Side startSide = wm.PhysicalSide(MakeLogicalSide(aAxis, LogicalEdge::Start));
Side endSide = wm.PhysicalSide(MakeLogicalSide(aAxis, LogicalEdge::End));
nsMargin styleBorder = mStyleBorder->GetComputedBorder();
nscoord borderStartEnd =
styleBorder.Side(startSide) + styleBorder.Side(endSide);
nscoord paddingStartEnd, marginStartEnd;
// See if the style system can provide us the padding directly
const auto* stylePadding = mFrame->StylePadding();
if (nsMargin padding; stylePadding->GetPadding(padding)) {
paddingStartEnd = padding.Side(startSide) + padding.Side(endSide);
} else {
// We have to compute the start and end values
const nscoord start = nsLayoutUtils::ComputeCBDependentValue(
aContainingBlockSize, stylePadding->mPadding.Get(startSide));
const nscoord end = nsLayoutUtils::ComputeCBDependentValue(
aContainingBlockSize, stylePadding->mPadding.Get(endSide));
paddingStartEnd = start + end;
}
// See if the style system can provide us the margin directly
if (nsMargin margin; mStyleMargin->GetMargin(margin)) {
marginStartEnd = margin.Side(startSide) + margin.Side(endSide);
} else {
// If the margin is 'auto', ComputeCBDependentValue() will return 0. The
// correct margin value will be computed later in InitAbsoluteConstraints
// (which is caller of this function, via CalculateHypotheticalPosition).
const nscoord start = nsLayoutUtils::ComputeCBDependentValue(
aContainingBlockSize, mStyleMargin->GetMargin(startSide));
const nscoord end = nsLayoutUtils::ComputeCBDependentValue(
aContainingBlockSize, mStyleMargin->GetMargin(endSide));
marginStartEnd = start + end;
}
nscoord outside = paddingStartEnd + borderStartEnd + marginStartEnd;
nscoord inside = 0;
if (mStylePosition->mBoxSizing == StyleBoxSizing::Border) {
inside = borderStartEnd + paddingStartEnd;
}
outside -= inside;
*aInsideBoxSizing = inside;
*aOutsideBoxSizing = outside;
}
/**
* Returns true iff a pre-order traversal of the normal child
* frames rooted at aFrame finds no non-empty frame before aDescendant.
*/
static bool AreAllEarlierInFlowFramesEmpty(nsIFrame* aFrame,
nsIFrame* aDescendant,
bool* aFound) {
if (aFrame == aDescendant) {
*aFound = true;
return true;
}
if (aFrame->IsPlaceholderFrame()) {
auto ph = static_cast<nsPlaceholderFrame*>(aFrame);
MOZ_ASSERT(ph->IsSelfEmpty() && ph->PrincipalChildList().IsEmpty());
ph->SetLineIsEmptySoFar(true);
} else {
if (!aFrame->IsSelfEmpty()) {
*aFound = false;
return false;
}
for (nsIFrame* f : aFrame->PrincipalChildList()) {
bool allEmpty = AreAllEarlierInFlowFramesEmpty(f, aDescendant, aFound);
if (*aFound || !allEmpty) {
return allEmpty;
}
}
}
*aFound = false;
return true;
}
static bool AxisPolarityFlipped(LogicalAxis aThisAxis, WritingMode aThisWm,
WritingMode aOtherWm) {
if (MOZ_LIKELY(aThisWm == aOtherWm)) {
// Dedicated short circuit for the common case.
return false;
}
LogicalAxis otherAxis = aThisWm.IsOrthogonalTo(aOtherWm)
? GetOrthogonalAxis(aThisAxis)
: aThisAxis;
NS_ASSERTION(
aThisWm.PhysicalAxis(aThisAxis) == aOtherWm.PhysicalAxis(otherAxis),
"Physical axes must match!");
Side thisStartSide =
aThisWm.PhysicalSide(MakeLogicalSide(aThisAxis, LogicalEdge::Start));
Side otherStartSide =
aOtherWm.PhysicalSide(MakeLogicalSide(otherAxis, LogicalEdge::Start));
return thisStartSide != otherStartSide;
}
static bool InlinePolarityFlipped(WritingMode aThisWm, WritingMode aOtherWm) {
return AxisPolarityFlipped(LogicalAxis::Inline, aThisWm, aOtherWm);
}
static bool BlockPolarityFlipped(WritingMode aThisWm, WritingMode aOtherWm) {
return AxisPolarityFlipped(LogicalAxis::Block, aThisWm, aOtherWm);
}
// In the code below, |aCBReflowInput->mFrame| is the absolute containing block,
// while |containingBlock| is the nearest block container of the placeholder
// frame, which may be different from the absolute containing block.
void ReflowInput::CalculateHypotheticalPosition(
nsPlaceholderFrame* aPlaceholderFrame, const ReflowInput* aCBReflowInput,
nsHypotheticalPosition& aHypotheticalPos) const {
NS_ASSERTION(mStyleDisplay->mOriginalDisplay != StyleDisplay::None,
"mOriginalDisplay has not been properly initialized");
// Find the nearest containing block frame to the placeholder frame,
// and its inline-start edge and width.
nscoord blockIStartContentEdge;
// Dummy writing mode for blockContentSize, will be changed as needed by
// GetHypotheticalBoxContainer.
WritingMode cbwm = aCBReflowInput->GetWritingMode();
LogicalSize blockContentSize(cbwm);
nsIFrame* containingBlock = GetHypotheticalBoxContainer(
aPlaceholderFrame, blockIStartContentEdge, blockContentSize);
// Now blockContentSize is in containingBlock's writing mode.
// If it's a replaced element and it has a 'auto' value for
//'inline size', see if we can get the intrinsic size. This will allow
// us to exactly determine both the inline edges
WritingMode wm = containingBlock->GetWritingMode();
const auto& styleISize = mStylePosition->ISize(wm);
bool isAutoISize = styleISize.IsAuto();
Maybe<nsSize> intrinsicSize;
if (mFlags.mIsReplaced && isAutoISize) {
// See if we can get the intrinsic size of the element
intrinsicSize = mFrame->GetIntrinsicSize().ToSize();
}
// See if we can calculate what the box inline size would have been if
// the element had been in the flow
Maybe<nscoord> boxISize;
if (mStyleDisplay->IsOriginalDisplayInlineOutside() && !mFlags.mIsReplaced) {
// For non-replaced inline-level elements the 'inline size' property
// doesn't apply, so we don't know what the inline size would have
// been without reflowing it
} else {
// It's either a replaced inline-level element or a block-level element
// Determine the total amount of inline direction
// border/padding/margin that the element would have had if it had
// been in the flow. Note that we ignore any 'auto' and 'inherit'
// values
nscoord contentEdgeToBoxSizingISize, boxSizingToMarginEdgeISize;
CalculateBorderPaddingMargin(
LogicalAxis::Inline, blockContentSize.ISize(wm),
&contentEdgeToBoxSizingISize, &boxSizingToMarginEdgeISize);
if (mFlags.mIsReplaced && isAutoISize) {
// It's a replaced element with an 'auto' inline size so the box inline
// size is its intrinsic size plus any border/padding/margin
if (intrinsicSize) {
boxISize.emplace(LogicalSize(wm, *intrinsicSize).ISize(wm) +
contentEdgeToBoxSizingISize +
boxSizingToMarginEdgeISize);
}
} else if (isAutoISize) {
// The box inline size is the containing block inline size
boxISize.emplace(blockContentSize.ISize(wm));
} else {
// We need to compute it. It's important we do this, because if it's
// percentage based this computed value may be different from the computed
// value calculated using the absolute containing block width
nscoord contentEdgeToBoxSizingBSize, dummy;
CalculateBorderPaddingMargin(LogicalAxis::Block,
blockContentSize.ISize(wm),
&contentEdgeToBoxSizingBSize, &dummy);
const auto contentISize =
mFrame
->ComputeISizeValue(mRenderingContext, wm, blockContentSize,
LogicalSize(wm, contentEdgeToBoxSizingISize,
contentEdgeToBoxSizingBSize),
boxSizingToMarginEdgeISize, styleISize,
mStylePosition->BSize(wm),
mFrame->GetAspectRatio())
.mISize;
boxISize.emplace(contentISize + contentEdgeToBoxSizingISize +
boxSizingToMarginEdgeISize);
}
}
// Get the placeholder x-offset and y-offset in the coordinate
// space of its containing block
// XXXbz the placeholder is not fully reflowed yet if our containing block is
// relatively positioned...
nsSize containerSize =
containingBlock->HasAnyStateBits(NS_FRAME_IN_REFLOW)
? aCBReflowInput->ComputedSizeAsContainerIfConstrained()
: containingBlock->GetSize();
LogicalPoint placeholderOffset(
wm, aPlaceholderFrame->GetOffsetToIgnoringScrolling(containingBlock),
containerSize);
// First, determine the hypothetical box's mBStart. We want to check the
// content insertion frame of containingBlock for block-ness, but make
// sure to compute all coordinates in the coordinate system of
// containingBlock.
nsBlockFrame* blockFrame =
do_QueryFrame(containingBlock->GetContentInsertionFrame());
if (blockFrame) {
// Use a null containerSize to convert a LogicalPoint functioning as a
// vector into a physical nsPoint vector.
const nsSize nullContainerSize;
LogicalPoint blockOffset(
wm, blockFrame->GetOffsetToIgnoringScrolling(containingBlock),
nullContainerSize);
bool isValid;
nsBlockInFlowLineIterator iter(blockFrame, aPlaceholderFrame, &isValid);
if (!isValid) {
// Give up. We're probably dealing with somebody using
// position:absolute inside native-anonymous content anyway.
aHypotheticalPos.mBStart = placeholderOffset.B(wm);
} else {
NS_ASSERTION(iter.GetContainer() == blockFrame,
"Found placeholder in wrong block!");
nsBlockFrame::LineIterator lineBox = iter.GetLine();
// How we determine the hypothetical box depends on whether the element
// would have been inline-level or block-level
LogicalRect lineBounds = lineBox->GetBounds().ConvertTo(
wm, lineBox->mWritingMode, lineBox->mContainerSize);
if (mStyleDisplay->IsOriginalDisplayInlineOutside()) {
// Use the block-start of the inline box which the placeholder lives in
// as the hypothetical box's block-start.
aHypotheticalPos.mBStart = lineBounds.BStart(wm) + blockOffset.B(wm);
} else {
// The element would have been block-level which means it would
// be below the line containing the placeholder frame, unless
// all the frames before it are empty. In that case, it would
// have been just before this line.
// XXXbz the line box is not fully reflowed yet if our
// containing block is relatively positioned...
if (lineBox != iter.End()) {
nsIFrame* firstFrame = lineBox->mFirstChild;
bool allEmpty = false;
if (firstFrame == aPlaceholderFrame) {
aPlaceholderFrame->SetLineIsEmptySoFar(true);
allEmpty = true;
} else {
auto* prev = aPlaceholderFrame->GetPrevSibling();
if (prev && prev->IsPlaceholderFrame()) {
auto* ph = static_cast<nsPlaceholderFrame*>(prev);
if (ph->GetLineIsEmptySoFar(&allEmpty)) {
aPlaceholderFrame->SetLineIsEmptySoFar(allEmpty);
}
}
}
if (!allEmpty) {
bool found = false;
while (firstFrame) { // See bug 223064
allEmpty = AreAllEarlierInFlowFramesEmpty(
firstFrame, aPlaceholderFrame, &found);
if (found || !allEmpty) {
break;
}
firstFrame = firstFrame->GetNextSibling();
}
aPlaceholderFrame->SetLineIsEmptySoFar(allEmpty);
}
NS_ASSERTION(firstFrame, "Couldn't find placeholder!");
if (allEmpty) {
// The top of the hypothetical box is the top of the line
// containing the placeholder, since there is nothing in the
// line before our placeholder except empty frames.
aHypotheticalPos.mBStart =
lineBounds.BStart(wm) + blockOffset.B(wm);
} else {
// The top of the hypothetical box is just below the line
// containing the placeholder.
aHypotheticalPos.mBStart = lineBounds.BEnd(wm) + blockOffset.B(wm);
}
} else {
// Just use the placeholder's block-offset wrt the containing block
aHypotheticalPos.mBStart = placeholderOffset.B(wm);
}
}
}
} else {
// The containing block is not a block, so it's probably something
// like a XUL box, etc.
// Just use the placeholder's block-offset
aHypotheticalPos.mBStart = placeholderOffset.B(wm);
}
// Second, determine the hypothetical box's mIStart.
// How we determine the hypothetical box depends on whether the element
// would have been inline-level or block-level
if (mStyleDisplay->IsOriginalDisplayInlineOutside() ||
mFlags.mIOffsetsNeedCSSAlign) {
// The placeholder represents the IStart edge of the hypothetical box.
// (Or if mFlags.mIOffsetsNeedCSSAlign is set, it represents the IStart
// edge of the Alignment Container.)
aHypotheticalPos.mIStart = placeholderOffset.I(wm);
} else {
aHypotheticalPos.mIStart = blockIStartContentEdge;
}
// The current coordinate space is that of the nearest block to the
// placeholder. Convert to the coordinate space of the absolute containing
// block.
const nsIFrame* cbFrame = aCBReflowInput->mFrame;
nsPoint cbOffset = containingBlock->GetOffsetToIgnoringScrolling(cbFrame);
if (cbFrame->IsViewportFrame()) {
// When the containing block is the ViewportFrame, i.e. we are calculating
// the static position for a fixed-positioned frame, we need to adjust the
// origin to exclude the scrollbar or scrollbar-gutter area. The
// ViewportFrame's containing block rect is passed into
// nsAbsoluteContainingBlock::ReflowAbsoluteFrame(), and it will add the
// rect's origin to the fixed-positioned frame's final position if needed.
//
// Note: The origin of the containing block rect is adjusted in
// ViewportFrame::AdjustReflowInputForScrollbars(). Ensure the code there
// remains in sync with the logic here.
if (ScrollContainerFrame* sf =
do_QueryFrame(cbFrame->PrincipalChildList().FirstChild())) {
const nsMargin scrollbarSizes = sf->GetActualScrollbarSizes();
cbOffset.MoveBy(-scrollbarSizes.left, -scrollbarSizes.top);
}
}
nsSize reflowSize = aCBReflowInput->ComputedSizeAsContainerIfConstrained();
LogicalPoint logCBOffs(wm, cbOffset, reflowSize - containerSize);
aHypotheticalPos.mIStart += logCBOffs.I(wm);
aHypotheticalPos.mBStart += logCBOffs.B(wm);
// If block direction doesn't match (whether orthogonal or antiparallel),
// we'll have to convert aHypotheticalPos to be in terms of cbwm.
// This upcoming conversion must be taken into account for border offsets.
const bool hypotheticalPosWillUseCbwm =
cbwm.GetBlockDir() != wm.GetBlockDir();
// The specified offsets are relative to the absolute containing block's
// padding edge and our current values are relative to the border edge, so
// translate.
const LogicalMargin border = aCBReflowInput->ComputedLogicalBorder(wm);
if (hypotheticalPosWillUseCbwm && InlinePolarityFlipped(wm, cbwm)) {
aHypotheticalPos.mIStart += border.IEnd(wm);
} else {
aHypotheticalPos.mIStart -= border.IStart(wm);
}
if (hypotheticalPosWillUseCbwm && BlockPolarityFlipped(wm, cbwm)) {
aHypotheticalPos.mBStart += border.BEnd(wm);
} else {
aHypotheticalPos.mBStart -= border.BStart(wm);
}
// At this point, we have computed aHypotheticalPos using the writing mode
// of the placeholder's containing block.
if (hypotheticalPosWillUseCbwm) {
// If the block direction we used in calculating aHypotheticalPos does not
// match the absolute containing block's, we need to convert here so that
// aHypotheticalPos is usable in relation to the absolute containing block.
// This requires computing or measuring the abspos frame's block-size,
// which is not otherwise required/used here (as aHypotheticalPos
// records only the block-start coordinate).
// This is similar to the inline-size calculation for a replaced
// inline-level element or a block-level element (above), except that
// 'auto' sizing is handled differently in the block direction for non-
// replaced elements and replaced elements lacking an intrinsic size.
// Determine the total amount of block direction
// border/padding/margin that the element would have had if it had
// been in the flow. Note that we ignore any 'auto' and 'inherit'
// values.
nscoord insideBoxSizing, outsideBoxSizing;
CalculateBorderPaddingMargin(LogicalAxis::Block, blockContentSize.BSize(wm),
&insideBoxSizing, &outsideBoxSizing);
nscoord boxBSize;
const auto& styleBSize = mStylePosition->BSize(wm);
if (styleBSize.BehavesLikeInitialValueOnBlockAxis()) {
if (mFlags.mIsReplaced && intrinsicSize) {
// It's a replaced element with an 'auto' block size so the box
// block size is its intrinsic size plus any border/padding/margin
boxBSize = LogicalSize(wm, *intrinsicSize).BSize(wm) +
outsideBoxSizing + insideBoxSizing;
} else {
// XXX Bug 1191801
// Figure out how to get the correct boxBSize here (need to reflow the
// positioned frame?)
boxBSize = 0;
}
} else {
// We need to compute it. It's important we do this, because if it's
// percentage-based this computed value may be different from the
// computed value calculated using the absolute containing block height.
boxBSize = nsLayoutUtils::ComputeBSizeValue(
blockContentSize.BSize(wm), insideBoxSizing,
styleBSize.AsLengthPercentage()) +
insideBoxSizing + outsideBoxSizing;
}
LogicalSize boxSize(wm, boxISize.valueOr(0), boxBSize);
LogicalPoint origin(wm, aHypotheticalPos.mIStart, aHypotheticalPos.mBStart);
origin =
origin.ConvertTo(cbwm, wm, reflowSize - boxSize.GetPhysicalSize(wm));
aHypotheticalPos.mIStart = origin.I(cbwm);
aHypotheticalPos.mBStart = origin.B(cbwm);
aHypotheticalPos.mWritingMode = cbwm;
} else {
aHypotheticalPos.mWritingMode = wm;
}
}
bool ReflowInput::IsInlineSizeComputableByBlockSizeAndAspectRatio(
nscoord aBlockSize) const {
WritingMode wm = GetWritingMode();
MOZ_ASSERT(!mStylePosition->GetInset(LogicalSide::BStart, wm).IsAuto() &&
!mStylePosition->GetInset(LogicalSide::BEnd, wm).IsAuto(),
"If any of the block-start and block-end are auto, aBlockSize "
"doesn't make sense");
NS_WARNING_ASSERTION(
aBlockSize >= 0 && aBlockSize != NS_UNCONSTRAINEDSIZE,
"The caller shouldn't give us an unresolved or invalid block size");
if (!mStylePosition->mAspectRatio.HasFiniteRatio()) {
return false;
}
// We don't have to compute the inline size by aspect-ratio and the resolved
// block size (from insets) for replaced elements.
if (mFrame->IsReplaced()) {
return false;
}
// If inline size is specified, we should have it by mFrame->ComputeSize()
// already.
if (mStylePosition->ISize(wm).IsLengthPercentage()) {
return false;
}
// If both inline insets are non-auto, mFrame->ComputeSize() should get a
// possible inline size by those insets, so we don't rely on aspect-ratio.
if (!mStylePosition->GetInset(LogicalSide::IStart, wm).IsAuto() &&
!mStylePosition->GetInset(LogicalSide::IEnd, wm).IsAuto()) {
return false;
}
// Just an error handling. If |aBlockSize| is NS_UNCONSTRAINEDSIZE, there must
// be something wrong, and we don't want to continue the calculation for
// aspect-ratio. So we return false if this happens.
return aBlockSize != NS_UNCONSTRAINEDSIZE;
}
// FIXME: Move this into nsIFrame::ComputeSize() if possible, so most of the
// if-checks can be simplier.
LogicalSize ReflowInput::CalculateAbsoluteSizeWithResolvedAutoBlockSize(
nscoord aAutoBSize, const LogicalSize& aTentativeComputedSize) {
LogicalSize resultSize = aTentativeComputedSize;
WritingMode wm = GetWritingMode();
// Two cases we don't want to early return:
// 1. If the block size behaves as initial value and we haven't resolved it in
// ComputeSize() yet, we need to apply |aAutoBSize|.
// Also, we check both computed style and |resultSize.BSize(wm)| to avoid
// applying |aAutoBSize| when the resolved block size is saturated at
// nscoord_MAX, and wrongly treated as NS_UNCONSTRAINEDSIZE because of a
// giant specified block-size.
// 2. If the block size needs to be computed via aspect-ratio and
// |aAutoBSize|, we need to apply |aAutoBSize|. In this case,
// |resultSize.BSize(wm)| may not be NS_UNCONSTRAINEDSIZE because we apply
// aspect-ratio in ComputeSize() for block axis by default, so we have to
// check its computed style.
const bool bSizeBehavesAsInitial =
mStylePosition->BSize(wm).BehavesLikeInitialValueOnBlockAxis();
const bool bSizeIsStillUnconstrained =
bSizeBehavesAsInitial && resultSize.BSize(wm) == NS_UNCONSTRAINEDSIZE;
const bool needsComputeInlineSizeByAspectRatio =
bSizeBehavesAsInitial &&
IsInlineSizeComputableByBlockSizeAndAspectRatio(aAutoBSize);
if (!bSizeIsStillUnconstrained && !needsComputeInlineSizeByAspectRatio) {
return resultSize;
}
// For non-replaced elements with block-size auto, the block-size
// fills the remaining space, and we clamp it by min/max size constraints.
resultSize.BSize(wm) = ApplyMinMaxBSize(aAutoBSize);
if (!needsComputeInlineSizeByAspectRatio) {
return resultSize;
}
// Calculate transferred inline size through aspect-ratio.
// For non-replaced elements, we always take box-sizing into account.
const auto boxSizingAdjust =
mStylePosition->mBoxSizing == StyleBoxSizing::Border
? ComputedLogicalBorderPadding(wm).Size(wm)
: LogicalSize(wm);
auto transferredISize =
mStylePosition->mAspectRatio.ToLayoutRatio().ComputeRatioDependentSize(
LogicalAxis::Inline, wm, aAutoBSize, boxSizingAdjust);
resultSize.ISize(wm) = ApplyMinMaxISize(transferredISize);
MOZ_ASSERT(mFlags.mIsBSizeSetByAspectRatio,
"This flag should have been set because nsIFrame::ComputeSize() "
"returns AspectRatioUsage::ToComputeBSize unconditionally for "
"auto block-size");
mFlags.mIsBSizeSetByAspectRatio = false;
return resultSize;
}
void ReflowInput::InitAbsoluteConstraints(const ReflowInput* aCBReflowInput,
const LogicalSize& aCBSize) {
WritingMode wm = GetWritingMode();
WritingMode cbwm = aCBReflowInput->GetWritingMode();
NS_WARNING_ASSERTION(aCBSize.BSize(cbwm) != NS_UNCONSTRAINEDSIZE,
"containing block bsize must be constrained");
NS_ASSERTION(!mFrame->IsTableFrame(),
"InitAbsoluteConstraints should not be called on table frames");
NS_ASSERTION(mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW),
"Why are we here?");
const auto& iStartOffset =
mStylePosition->GetInset(LogicalSide::IStart, cbwm);
const auto& iEndOffset = mStylePosition->GetInset(LogicalSide::IEnd, cbwm);
const auto& bStartOffset =
mStylePosition->GetInset(LogicalSide::BStart, cbwm);
const auto& bEndOffset = mStylePosition->GetInset(LogicalSide::BEnd, cbwm);
bool iStartIsAuto = iStartOffset.IsAuto();
bool iEndIsAuto = iEndOffset.IsAuto();
bool bStartIsAuto = bStartOffset.IsAuto();
bool bEndIsAuto = bEndOffset.IsAuto();
// If both 'inline-start' and 'inline-end' are 'auto' or both 'block-start'
// and 'block-end' are 'auto', then compute the hypothetical box position
// where the element would have if it were in the flow.
nsHypotheticalPosition hypotheticalPos;
if ((iStartIsAuto && iEndIsAuto) || (bStartIsAuto && bEndIsAuto)) {
nsPlaceholderFrame* placeholderFrame = mFrame->GetPlaceholderFrame();
MOZ_ASSERT(placeholderFrame, "no placeholder frame");
nsIFrame* placeholderParent = placeholderFrame->GetParent();
MOZ_ASSERT(placeholderParent, "shouldn't have unparented placeholders");
if (placeholderFrame->HasAnyStateBits(
PLACEHOLDER_STATICPOS_NEEDS_CSSALIGN)) {
MOZ_ASSERT(placeholderParent->IsFlexOrGridContainer(),
"This flag should only be set on grid/flex children");
// If the (as-yet unknown) static position will determine the inline
// and/or block offsets, set flags to note those offsets aren't valid
// until we can do CSS Box Alignment on the OOF frame.
mFlags.mIOffsetsNeedCSSAlign = (iStartIsAuto && iEndIsAuto);
mFlags.mBOffsetsNeedCSSAlign = (bStartIsAuto && bEndIsAuto);
}
if (mFlags.mStaticPosIsCBOrigin) {
hypotheticalPos.mWritingMode = cbwm;
hypotheticalPos.mIStart = nscoord(0);
hypotheticalPos.mBStart = nscoord(0);
if (placeholderParent->IsGridContainerFrame() &&
placeholderParent->HasAnyStateBits(NS_STATE_GRID_IS_COL_MASONRY |
NS_STATE_GRID_IS_ROW_MASONRY)) {
// Disable CSS alignment in Masonry layout since we don't have real grid
// areas in that axis. We'll use the placeholder position instead as it
// was calculated by nsGridContainerFrame::MasonryLayout.
auto cbsz = aCBSize.GetPhysicalSize(cbwm);
LogicalPoint pos = placeholderFrame->GetLogicalPosition(cbwm, cbsz);
if (placeholderParent->HasAnyStateBits(NS_STATE_GRID_IS_COL_MASONRY)) {
mFlags.mIOffsetsNeedCSSAlign = false;
hypotheticalPos.mIStart = pos.I(cbwm);
} else {
mFlags.mBOffsetsNeedCSSAlign = false;
hypotheticalPos.mBStart = pos.B(cbwm);
}
}
} else {
// XXXmats all this is broken for orthogonal writing-modes: bug 1521988.
CalculateHypotheticalPosition(placeholderFrame, aCBReflowInput,
hypotheticalPos);
if (aCBReflowInput->mFrame->IsGridContainerFrame()) {
// 'hypotheticalPos' is relative to the padding rect of the CB *frame*.
// In grid layout the CB is the grid area rectangle, so we translate
// 'hypotheticalPos' to be relative that rectangle here.
nsRect cb = nsGridContainerFrame::GridItemCB(mFrame);
nscoord left(0);
nscoord right(0);
if (cbwm.IsBidiLTR()) {
left = cb.X();
} else {
right = aCBReflowInput->ComputedWidth() +
aCBReflowInput->ComputedPhysicalPadding().LeftRight() -
cb.XMost();
}
LogicalMargin offsets(cbwm, nsMargin(cb.Y(), right, nscoord(0), left));
hypotheticalPos.mIStart -= offsets.IStart(cbwm);
hypotheticalPos.mBStart -= offsets.BStart(cbwm);
}
}
}
// Size of the containing block in its writing mode
LogicalSize cbSize = aCBSize;
LogicalMargin offsets(cbwm);
// Handle auto inset values, as per [1].
// Technically superceded by a new section [2], but none of the browsers seem
// to follow this behaviour.
//
if (iStartIsAuto) {
offsets.IStart(cbwm) = 0;
} else {
offsets.IStart(cbwm) = nsLayoutUtils::ComputeCBDependentValue(
cbSize.ISize(cbwm), iStartOffset);
}
if (iEndIsAuto) {
offsets.IEnd(cbwm) = 0;
} else {
offsets.IEnd(cbwm) =
nsLayoutUtils::ComputeCBDependentValue(cbSize.ISize(cbwm), iEndOffset);
}
if (iStartIsAuto && iEndIsAuto) {
if (cbwm.IsBidiLTR() != hypotheticalPos.mWritingMode.IsBidiLTR()) {
offsets.IEnd(cbwm) = hypotheticalPos.mIStart;
iEndIsAuto = false;
} else {
offsets.IStart(cbwm) = hypotheticalPos.mIStart;
iStartIsAuto = false;
}
}
if (bStartIsAuto) {
offsets.BStart(cbwm) = 0;
} else {
offsets.BStart(cbwm) = nsLayoutUtils::ComputeCBDependentValue(
cbSize.BSize(cbwm), bStartOffset);
}
if (bEndIsAuto) {
offsets.BEnd(cbwm) = 0;
} else {
offsets.BEnd(cbwm) =
nsLayoutUtils::ComputeCBDependentValue(cbSize.BSize(cbwm), bEndOffset);
}
if (bStartIsAuto && bEndIsAuto) {
// Treat 'top' like 'static-position'
offsets.BStart(cbwm) = hypotheticalPos.mBStart;
bStartIsAuto = false;
}
SetComputedLogicalOffsets(cbwm, offsets);
if (wm.IsOrthogonalTo(cbwm)) {
if (bStartIsAuto || bEndIsAuto) {
mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
}
} else {
if (iStartIsAuto || iEndIsAuto) {
mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
}
}
nsIFrame::SizeComputationResult sizeResult = {
LogicalSize(wm), nsIFrame::AspectRatioUsage::None};
{
AutoMaybeDisableFontInflation an(mFrame);
sizeResult = mFrame->ComputeSize(
mRenderingContext, wm, cbSize.ConvertTo(wm, cbwm),
cbSize.ConvertTo(wm, cbwm).ISize(wm), // XXX or AvailableISize()?
ComputedLogicalMargin(wm).Size(wm) +
ComputedLogicalOffsets(wm).Size(wm),
ComputedLogicalBorderPadding(wm).Size(wm), {}, mComputeSizeFlags);
mComputedSize = sizeResult.mLogicalSize;
NS_ASSERTION(ComputedISize() >= 0, "Bogus inline-size");
NS_ASSERTION(
ComputedBSize() == NS_UNCONSTRAINEDSIZE || ComputedBSize() >= 0,
"Bogus block-size");
}
LogicalSize& computedSize = sizeResult.mLogicalSize;
computedSize = computedSize.ConvertTo(cbwm, wm);
mFlags.mIsBSizeSetByAspectRatio = sizeResult.mAspectRatioUsage ==
nsIFrame::AspectRatioUsage::ToComputeBSize;
// XXX Now that we have ComputeSize, can we condense many of the
// branches off of widthIsAuto?
LogicalMargin margin = ComputedLogicalMargin(cbwm);
const LogicalMargin borderPadding = ComputedLogicalBorderPadding(cbwm);
bool iSizeIsAuto = mStylePosition->ISize(cbwm).IsAuto();
bool marginIStartIsAuto = false;
bool marginIEndIsAuto = false;
bool marginBStartIsAuto = false;
bool marginBEndIsAuto = false;
if (iStartIsAuto) {
// We know 'right' is not 'auto' anymore thanks to the hypothetical
// box code above.
// Solve for 'left'.
if (iSizeIsAuto) {
// XXXldb This, and the corresponding code in
// nsAbsoluteContainingBlock.cpp, could probably go away now that
// we always compute widths.
offsets.IStart(cbwm) = NS_AUTOOFFSET;
} else {
offsets.IStart(cbwm) = cbSize.ISize(cbwm) - offsets.IEnd(cbwm) -
computedSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
borderPadding.IStartEnd(cbwm);
}
} else if (iEndIsAuto) {
// We know 'left' is not 'auto' anymore thanks to the hypothetical
// box code above.
// Solve for 'right'.
if (iSizeIsAuto) {
// XXXldb This, and the corresponding code in
// nsAbsoluteContainingBlock.cpp, could probably go away now that
// we always compute widths.
offsets.IEnd(cbwm) = NS_AUTOOFFSET;
} else {
offsets.IEnd(cbwm) = cbSize.ISize(cbwm) - offsets.IStart(cbwm) -
computedSize.ISize(cbwm) - margin.IStartEnd(cbwm) -
borderPadding.IStartEnd(cbwm);
}
} else if (!mFrame->HasIntrinsicKeywordForBSize() ||
!wm.IsOrthogonalTo(cbwm)) {
// Neither 'inline-start' nor 'inline-end' is 'auto'.
// The inline-size might not fill all the available space (even though we
// didn't shrink-wrap) in case:
// * insets are explicitly set and the child frame is not stretched
// * inline-size was specified
// * we're dealing with a replaced element
// * width was constrained by min- or max-inline-size.
nscoord availMarginSpace =
aCBSize.ISize(cbwm) - offsets.IStartEnd(cbwm) - margin.IStartEnd(cbwm) -
borderPadding.IStartEnd(cbwm) - computedSize.ISize(cbwm);
marginIStartIsAuto =
mStyleMargin->GetMargin(LogicalSide::IStart, cbwm).IsAuto();
marginIEndIsAuto =
mStyleMargin->GetMargin(LogicalSide::IEnd, cbwm).IsAuto();
ComputeAbsPosInlineAutoMargin(availMarginSpace, cbwm, marginIStartIsAuto,
marginIEndIsAuto, margin, offsets);
}
bool bSizeIsAuto =
mStylePosition->BSize(cbwm).BehavesLikeInitialValueOnBlockAxis();
if (bStartIsAuto) {
// solve for block-start
if (bSizeIsAuto) {
offsets.BStart(cbwm) = NS_AUTOOFFSET;
} else {
offsets.BStart(cbwm) = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
borderPadding.BStartEnd(cbwm) -
computedSize.BSize(cbwm) - offsets.BEnd(cbwm);
}
} else if (bEndIsAuto) {
// solve for block-end
if (bSizeIsAuto) {
offsets.BEnd(cbwm) = NS_AUTOOFFSET;
} else {
offsets.BEnd(cbwm) = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
borderPadding.BStartEnd(cbwm) -
computedSize.BSize(cbwm) - offsets.BStart(cbwm);
}
} else if (!mFrame->HasIntrinsicKeywordForBSize() ||
wm.IsOrthogonalTo(cbwm)) {
// Neither block-start nor -end is 'auto'.
nscoord autoBSize = cbSize.BSize(cbwm) - margin.BStartEnd(cbwm) -
borderPadding.BStartEnd(cbwm) - offsets.BStartEnd(cbwm);
autoBSize = std::max(autoBSize, 0);
// FIXME: Bug 1602669: if |autoBSize| happens to be numerically equal to
// NS_UNCONSTRAINEDSIZE, we may get some unexpected behavior. We need a
// better way to distinguish between unconstrained size and resolved size.
NS_WARNING_ASSERTION(autoBSize != NS_UNCONSTRAINEDSIZE,
"Unexpected size from block-start and block-end");
// The block-size might not fill all the available space in case:
// * insets are explicitly set and the child frame is not stretched
// * bsize was specified
// * we're dealing with a replaced element
// * bsize was constrained by min- or max-bsize.
nscoord availMarginSpace = autoBSize - computedSize.BSize(cbwm);
marginBStartIsAuto =
mStyleMargin->GetMargin(LogicalSide::BStart, cbwm).IsAuto();
marginBEndIsAuto =
mStyleMargin->GetMargin(LogicalSide::BEnd, cbwm).IsAuto();
ComputeAbsPosBlockAutoMargin(availMarginSpace, cbwm, marginBStartIsAuto,
marginBEndIsAuto, margin, offsets);
}
mComputedSize = computedSize.ConvertTo(wm, cbwm);
SetComputedLogicalOffsets(cbwm, offsets);
SetComputedLogicalMargin(cbwm, margin);
// If we have auto margins, update our UsedMarginProperty. The property
// will have already been created by InitOffsets if it is needed.
if (marginIStartIsAuto || marginIEndIsAuto || marginBStartIsAuto ||
marginBEndIsAuto) {
nsMargin* propValue = mFrame->GetProperty(nsIFrame::UsedMarginProperty());
MOZ_ASSERT(propValue,
"UsedMarginProperty should have been created "
"by InitOffsets.");
*propValue = margin.GetPhysicalMargin(cbwm);
}
}
// This will not be converted to abstract coordinates because it's only
// used in CalcQuirkContainingBlockHeight
static nscoord GetBlockMarginBorderPadding(const ReflowInput* aReflowInput) {
nscoord result = 0;
if (!aReflowInput) {
return result;
}
// zero auto margins
nsMargin margin = aReflowInput->ComputedPhysicalMargin();
if (NS_AUTOMARGIN == margin.top) {
margin.top = 0;
}
if (NS_AUTOMARGIN == margin.bottom) {
margin.bottom = 0;
}
result += margin.top + margin.bottom;
result += aReflowInput->ComputedPhysicalBorderPadding().top +
aReflowInput->ComputedPhysicalBorderPadding().bottom;
return result;
}
/* Get the height based on the viewport of the containing block specified
* in aReflowInput when the containing block has mComputedHeight ==
* NS_UNCONSTRAINEDSIZE This will walk up the chain of containing blocks looking
* for a computed height until it finds the canvas frame, or it encounters a
* frame that is not a block, area, or scroll frame. This handles compatibility
* with IE (see bug 85016 and bug 219693)
*
* When we encounter scrolledContent block frames, we skip over them,
* since they are guaranteed to not be useful for computing the containing
* block.
*
* See also IsQuirkContainingBlockHeight.
*/
static nscoord CalcQuirkContainingBlockHeight(
const ReflowInput* aCBReflowInput) {
const ReflowInput* firstAncestorRI = nullptr; // a candidate for html frame
const ReflowInput* secondAncestorRI = nullptr; // a candidate for body frame
// initialize the default to NS_UNCONSTRAINEDSIZE as this is the containings
// block computed height when this function is called. It is possible that we
// don't alter this height especially if we are restricted to one level
nscoord result = NS_UNCONSTRAINEDSIZE;
const ReflowInput* ri = aCBReflowInput;
for (; ri; ri = ri->mParentReflowInput) {
LayoutFrameType frameType = ri->mFrame->Type();
// if the ancestor is auto height then skip it and continue up if it
// is the first block frame and possibly the body/html
if (LayoutFrameType::Block == frameType ||
LayoutFrameType::ScrollContainer == frameType) {
secondAncestorRI = firstAncestorRI;
firstAncestorRI = ri;
// If the current frame we're looking at is positioned, we don't want to
// go any further (see bug 221784). The behavior we want here is: 1) If
// not auto-height, use this as the percentage base. 2) If auto-height,
// keep looking, unless the frame is positioned.
if (NS_UNCONSTRAINEDSIZE == ri->ComputedHeight()) {
if (ri->mFrame->IsAbsolutelyPositioned(ri->mStyleDisplay)) {
break;
} else {
continue;
}
}
} else if (LayoutFrameType::Canvas == frameType) {
// Always continue on to the height calculation
} else if (LayoutFrameType::PageContent == frameType) {
nsIFrame* prevInFlow = ri->mFrame->GetPrevInFlow();
// only use the page content frame for a height basis if it is the first
// in flow
if (prevInFlow) {
break;
}
} else {
break;
}
// if the ancestor is the page content frame then the percent base is
// the avail height, otherwise it is the computed height
result = (LayoutFrameType::PageContent == frameType) ? ri->AvailableHeight()
: ri->ComputedHeight();
// if unconstrained - don't sutract borders - would result in huge height
if (NS_UNCONSTRAINEDSIZE == result) {
return result;
}
// if we got to the canvas or page content frame, then subtract out
// margin/border/padding for the BODY and HTML elements
if ((LayoutFrameType::Canvas == frameType) ||
(LayoutFrameType::PageContent == frameType)) {
result -= GetBlockMarginBorderPadding(firstAncestorRI);
result -= GetBlockMarginBorderPadding(secondAncestorRI);
#ifdef DEBUG
// make sure the first ancestor is the HTML and the second is the BODY
if (firstAncestorRI) {
nsIContent* frameContent = firstAncestorRI->mFrame->GetContent();
if (frameContent) {
NS_ASSERTION(frameContent->IsHTMLElement(nsGkAtoms::html),
"First ancestor is not HTML");
}
}
if (secondAncestorRI) {
nsIContent* frameContent = secondAncestorRI->mFrame->GetContent();
if (frameContent) {
NS_ASSERTION(frameContent->IsHTMLElement(nsGkAtoms::body),
"Second ancestor is not BODY");
}
}
#endif
}
// if we got to the html frame (a block child of the canvas) ...
else if (LayoutFrameType::Block == frameType && ri->mParentReflowInput &&
ri->mParentReflowInput->mFrame->IsCanvasFrame()) {
// ... then subtract out margin/border/padding for the BODY element
result -= GetBlockMarginBorderPadding(secondAncestorRI);
}
break;
}
// Make sure not to return a negative height here!
return std::max(result, 0);
}
// Called by InitConstraints() to compute the containing block rectangle for
// the element. Handles the special logic for absolutely positioned elements
LogicalSize ReflowInput::ComputeContainingBlockRectangle(
nsPresContext* aPresContext, const ReflowInput* aContainingBlockRI) const {
// Unless the element is absolutely positioned, the containing block is
// formed by the content edge of the nearest block-level ancestor
LogicalSize cbSize = aContainingBlockRI->ComputedSize();
WritingMode wm = aContainingBlockRI->GetWritingMode();
if (aContainingBlockRI->mFlags.mTreatBSizeAsIndefinite) {
cbSize.BSize(wm) = NS_UNCONSTRAINEDSIZE;
} else if (aContainingBlockRI->mPercentageBasisInBlockAxis) {
MOZ_ASSERT(cbSize.BSize(wm) == NS_UNCONSTRAINEDSIZE,
"Why provide a percentage basis when the containing block's "
"block-size is definite?");
cbSize.BSize(wm) = *aContainingBlockRI->mPercentageBasisInBlockAxis;
}
if (((mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW) &&
// XXXfr hack for making frames behave properly when in overflow
// container lists, see bug 154892; need to revisit later
!mFrame->GetPrevInFlow()) ||
(mFrame->IsTableFrame() &&
mFrame->GetParent()->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW))) &&
mStyleDisplay->IsAbsolutelyPositioned(mFrame)) {
// See if the ancestor is block-level or inline-level
const auto computedPadding = aContainingBlockRI->ComputedLogicalPadding(wm);
if (aContainingBlockRI->mStyleDisplay->IsInlineOutsideStyle()) {
// Base our size on the actual size of the frame. In cases when this is
// completely bogus (eg initial reflow), this code shouldn't even be
// called, since the code in nsInlineFrame::Reflow will pass in
// the containing block dimensions to our constructor.
// XXXbz we should be taking the in-flows into account too, but
// that's very hard.
LogicalMargin computedBorder =
aContainingBlockRI->ComputedLogicalBorderPadding(wm) -
computedPadding;
cbSize.ISize(wm) =
aContainingBlockRI->mFrame->ISize(wm) - computedBorder.IStartEnd(wm);
NS_ASSERTION(cbSize.ISize(wm) >= 0, "Negative containing block isize!");
cbSize.BSize(wm) =
aContainingBlockRI->mFrame->BSize(wm) - computedBorder.BStartEnd(wm);
NS_ASSERTION(cbSize.BSize(wm) >= 0, "Negative containing block bsize!");
} else {
// If the ancestor is block-level, the containing block is formed by the
// padding edge of the ancestor
cbSize += computedPadding.Size(wm);
}
} else {
auto IsQuirky = [](const StyleSize& aSize) -> bool {
return aSize.ConvertsToPercentage();
};
// an element in quirks mode gets a containing block based on looking for a
// parent with a non-auto height if the element has a percent height.
// Note: We don't emulate this quirk for percents in calc(), or in vertical
// writing modes, or if the containing block is a flex or grid item.
if (!wm.IsVertical() && NS_UNCONSTRAINEDSIZE == cbSize.BSize(wm)) {
if (eCompatibility_NavQuirks == aPresContext->CompatibilityMode() &&
!aContainingBlockRI->mFrame->IsFlexOrGridItem() &&
(IsQuirky(mStylePosition->GetHeight()) ||
(mFrame->IsTableWrapperFrame() &&
IsQuirky(mFrame->PrincipalChildList()
.FirstChild()
->StylePosition()
->GetHeight())))) {
cbSize.BSize(wm) = CalcQuirkContainingBlockHeight(aContainingBlockRI);
}
}
}
return cbSize.ConvertTo(GetWritingMode(), wm);
}
// XXX refactor this code to have methods for each set of properties
// we are computing: width,height,line-height; margin; offsets
void ReflowInput::InitConstraints(
nsPresContext* aPresContext, const Maybe<LogicalSize>& aContainingBlockSize,
const Maybe<LogicalMargin>& aBorder, const Maybe<LogicalMargin>& aPadding,
LayoutFrameType aFrameType) {
WritingMode wm = GetWritingMode();
LogicalSize cbSize = aContainingBlockSize.valueOr(
LogicalSize(mWritingMode, NS_UNCONSTRAINEDSIZE, NS_UNCONSTRAINEDSIZE));
// If this is a reflow root, then set the computed width and
// height equal to the available space
if (nullptr == mParentReflowInput || mFlags.mDummyParentReflowInput) {
// XXXldb This doesn't mean what it used to!
InitOffsets(wm, cbSize.ISize(wm), aFrameType, mComputeSizeFlags, aBorder,
aPadding, mStyleDisplay);
// Override mComputedMargin since reflow roots start from the
// frame's boundary, which is inside the margin.
SetComputedLogicalMargin(wm, LogicalMargin(wm));
SetComputedLogicalOffsets(wm, LogicalMargin(wm));
const auto borderPadding = ComputedLogicalBorderPadding(wm);
SetComputedISize(
std::max(0, AvailableISize() - borderPadding.IStartEnd(wm)),
ResetResizeFlags::No);
SetComputedBSize(
AvailableBSize() != NS_UNCONSTRAINEDSIZE
? std::max(0, AvailableBSize() - borderPadding.BStartEnd(wm))
: NS_UNCONSTRAINEDSIZE,
ResetResizeFlags::No);
mComputedMinSize.SizeTo(mWritingMode, 0, 0);
mComputedMaxSize.SizeTo(mWritingMode, NS_UNCONSTRAINEDSIZE,
NS_UNCONSTRAINEDSIZE);
} else {
// Get the containing block's reflow input
const ReflowInput* cbri = mCBReflowInput;
MOZ_ASSERT(cbri, "no containing block");
MOZ_ASSERT(mFrame->GetParent());
// If we weren't given a containing block size, then compute one.
if (aContainingBlockSize.isNothing()) {
cbSize = ComputeContainingBlockRectangle(aPresContext, cbri);
}
// See if the containing block height is based on the size of its
// content
if (NS_UNCONSTRAINEDSIZE == cbSize.BSize(wm)) {
// See if the containing block is a cell frame which needs
// to use the mComputedHeight of the cell instead of what the cell block
// passed in.
// XXX It seems like this could lead to bugs with min-height and friends
if (cbri->mParentReflowInput && cbri->mFrame->IsTableCellFrame()) {
cbSize.BSize(wm) = cbri->ComputedSize(wm).BSize(wm);
}
}
// XXX Might need to also pass the CB height (not width) for page boxes,
// too, if we implement them.
// For calculating positioning offsets, margins, borders and
// padding, we use the writing mode of the containing block
WritingMode cbwm = cbri->GetWritingMode();
InitOffsets(cbwm, cbSize.ConvertTo(cbwm, wm).ISize(cbwm), aFrameType,
mComputeSizeFlags, aBorder, aPadding, mStyleDisplay);
// For calculating the size of this box, we use its own writing mode
const auto& blockSize = mStylePosition->BSize(wm);
bool isAutoBSize = blockSize.BehavesLikeInitialValueOnBlockAxis();
// Check for a percentage based block size and a containing block
// block size that depends on the content block size
if (blockSize.HasPercent()) {
if (NS_UNCONSTRAINEDSIZE == cbSize.BSize(wm)) {
// this if clause enables %-blockSize on replaced inline frames,
// such as images. See bug 54119. The else clause "blockSizeUnit =
// eStyleUnit_Auto;" used to be called exclusively.
if (mFlags.mIsReplaced && mStyleDisplay->IsInlineOutsideStyle()) {
// Get the containing block's reflow input
NS_ASSERTION(cbri, "no containing block");
// in quirks mode, get the cb height using the special quirk method
if (!wm.IsVertical() &&
eCompatibility_NavQuirks == aPresContext->CompatibilityMode()) {
if (!cbri->mFrame->IsTableCellFrame() &&
!cbri->mFrame->IsFlexOrGridItem()) {
cbSize.BSize(wm) = CalcQuirkContainingBlockHeight(cbri);
if (cbSize.BSize(wm) == NS_UNCONSTRAINEDSIZE) {
isAutoBSize = true;
}
} else {
isAutoBSize = true;
}
}
// in standard mode, use the cb block size. if it's "auto",
// as will be the case by default in BODY, use auto block size
// as per CSS2 spec.
else {
nscoord computedBSize = cbri->ComputedSize(wm).BSize(wm);
if (NS_UNCONSTRAINEDSIZE != computedBSize) {
cbSize.BSize(wm) = computedBSize;
} else {
isAutoBSize = true;
}
}
} else {
// default to interpreting the blockSize like 'auto'
isAutoBSize = true;
}
}
}
// Compute our offsets if the element is relatively positioned. We
// need the correct containing block inline-size and block-size
// here, which is why we need to do it after all the quirks-n-such
// above. (If the element is sticky positioned, we need to wait
// until the scroll container knows its size, so we compute offsets
// from StickyScrollContainer::UpdatePositions.)
if (mStyleDisplay->IsRelativelyPositioned(mFrame)) {
const LogicalMargin offsets =
ComputeRelativeOffsets(cbwm, mFrame, cbSize.ConvertTo(cbwm, wm));
SetComputedLogicalOffsets(cbwm, offsets);
} else {
// Initialize offsets to 0
SetComputedLogicalOffsets(wm, LogicalMargin(wm));
}
// Calculate the computed values for min and max properties. Note that
// this MUST come after we've computed our border and padding.
ComputeMinMaxValues(cbSize);
// Calculate the computed inlineSize and blockSize.
// This varies by frame type.
if (IsInternalTableFrame()) {
// Internal table elements. The rules vary depending on the type.
// Calculate the computed isize
bool rowOrRowGroup = false;
const auto& inlineSize = mStylePosition->ISize(wm);
bool isAutoISize = inlineSize.IsAuto();
if ((StyleDisplay::TableRow == mStyleDisplay->mDisplay) ||
(StyleDisplay::TableRowGroup == mStyleDisplay->mDisplay)) {
// 'inlineSize' property doesn't apply to table rows and row groups
isAutoISize = true;
rowOrRowGroup = true;
}
// calc() with both percentages and lengths act like auto on internal
// table elements
if (isAutoISize || inlineSize.HasLengthAndPercentage()) {
if (AvailableISize() != NS_UNCONSTRAINEDSIZE && !rowOrRowGroup) {
// Internal table elements don't have margins. Only tables and
// cells have border and padding
SetComputedISize(
std::max(0, AvailableISize() -
ComputedLogicalBorderPadding(wm).IStartEnd(wm)),
ResetResizeFlags::No);
} else {
SetComputedISize(AvailableISize(), ResetResizeFlags::No);
}
NS_ASSERTION(ComputedISize() >= 0, "Bogus computed isize");
} else {
SetComputedISize(
ComputeISizeValue(cbSize, mStylePosition->mBoxSizing, inlineSize),
ResetResizeFlags::No);
}
// Calculate the computed block size
if (StyleDisplay::TableColumn == mStyleDisplay->mDisplay ||
StyleDisplay::TableColumnGroup == mStyleDisplay->mDisplay) {
// 'blockSize' property doesn't apply to table columns and column groups
isAutoBSize = true;
}
// calc() with both percentages and lengths acts like 'auto' on internal
// table elements
if (isAutoBSize || blockSize.HasLengthAndPercentage()) {
SetComputedBSize(NS_UNCONSTRAINEDSIZE, ResetResizeFlags::No);
} else {
SetComputedBSize(
ComputeBSizeValue(cbSize.BSize(wm), mStylePosition->mBoxSizing,
blockSize.AsLengthPercentage()),
ResetResizeFlags::No);
}
// Doesn't apply to internal table elements
mComputedMinSize.SizeTo(mWritingMode, 0, 0);
mComputedMaxSize.SizeTo(mWritingMode, NS_UNCONSTRAINEDSIZE,
NS_UNCONSTRAINEDSIZE);
} else if (mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW) &&
mStyleDisplay->IsAbsolutelyPositionedStyle() &&
// XXXfr hack for making frames behave properly when in overflow
// container lists, see bug 154892; need to revisit later
!mFrame->GetPrevInFlow()) {
InitAbsoluteConstraints(cbri,
cbSize.ConvertTo(cbri->GetWritingMode(), wm));
} else {
AutoMaybeDisableFontInflation an(mFrame);
nsIFrame* const alignCB = [&] {
nsIFrame* cb = mFrame->GetParent();
if (cb->IsTableWrapperFrame()) {
nsIFrame* alignCBParent = cb->GetParent();
if (alignCBParent && alignCBParent->IsGridContainerFrame()) {
return alignCBParent;
}
}
return cb;
}();
const bool isInlineLevel = [&] {
if (mFrame->IsTableFrame()) {
// An inner table frame is not inline-level, even if it happens to
// have 'display:inline-table'. (That makes its table-wrapper frame be
// inline-level, but not the inner table frame)
return false;
}
if (mStyleDisplay->IsInlineOutsideStyle()) {
return true;
}
if (mFlags.mIsReplaced && (mStyleDisplay->IsInnerTableStyle() ||
mStyleDisplay->DisplayOutside() ==
StyleDisplayOutside::TableCaption)) {
// Internal table values on replaced elements behave as inline
//
// ... it is handled instead as though the author had declared
// either 'block' (for 'table' display) or 'inline' (for all
// other values)"
//
// FIXME(emilio): The only test that covers this is
// table-anonymous-objects-211.xht, which fails on other browsers (but
// differently to us, if you just remove this condition).
return true;
}
if (mFrame->HasAnyStateBits(NS_FRAME_OUT_OF_FLOW) &&
!mStyleDisplay->IsAbsolutelyPositionedStyle()) {
// Floats are treated as inline-level and also shrink-wrap.
return true;
}
return false;
}();
const bool shouldShrinkWrap = [&] {
if (isInlineLevel) {
return true;
}
if (mFlags.mIsReplaced && !alignCB->IsFlexOrGridContainer()) {
// Shrink-wrap replaced elements when in-flow (out of flows are
// handled above). We exclude replaced elements in grid or flex
// contexts, where we don't want to shrink-wrap unconditionally (so
// that stretching can happen). When grid/flex explicitly want
// shrink-wrapping, they can request it directly using the relevant
// flag.
return true;
}
if (!alignCB->IsGridContainerFrame() &&
mWritingMode.IsOrthogonalTo(GetCBWritingMode())) {
// Shrink-wrap blocks that are orthogonal to their container (unless
// we're in a grid?)
return true;
}
return false;
}();
if (shouldShrinkWrap) {
mComputeSizeFlags += ComputeSizeFlag::ShrinkWrap;
}
if (cbSize.ISize(wm) == NS_UNCONSTRAINEDSIZE) {
// For orthogonal flows, where we found a parent orthogonal-limit for
// AvailableISize() in Init(), we'll use the same here as well.
cbSize.ISize(wm) = AvailableISize();
}
auto size =
mFrame->ComputeSize(mRenderingContext, wm, cbSize, AvailableISize(),
ComputedLogicalMargin(wm).Size(wm),
ComputedLogicalBorderPadding(wm).Size(wm),
mStyleSizeOverrides, mComputeSizeFlags);
mComputedSize = size.mLogicalSize;
NS_ASSERTION(ComputedISize() >= 0, "Bogus inline-size");
NS_ASSERTION(
ComputedBSize() == NS_UNCONSTRAINEDSIZE || ComputedBSize() >= 0,
"Bogus block-size");
mFlags.mIsBSizeSetByAspectRatio =
size.mAspectRatioUsage == nsIFrame::AspectRatioUsage::ToComputeBSize;
const bool shouldCalculateBlockSideMargins = [&]() {
if (isInlineLevel) {
return false;
}
if (mFrame->IsTableFrame()) {
return false;
}
if (alignCB->IsFlexOrGridContainer()) {
// Exclude flex and grid items.
return false;
}
const auto pseudoType = mFrame->Style()->GetPseudoType();
if (pseudoType == PseudoStyleType::marker &&
mFrame->GetParent()->StyleList()->mListStylePosition ==
StyleListStylePosition::Outside) {
// Exclude outside ::markers.
return false;
}
if (pseudoType == PseudoStyleType::columnContent) {
// Exclude -moz-column-content since it cannot have any margin.
return false;
}
return true;
}();
if (shouldCalculateBlockSideMargins) {
CalculateBlockSideMargins();
}
}
}
// Save our containing block dimensions
mContainingBlockSize = cbSize;
}
static void UpdateProp(nsIFrame* aFrame,
const FramePropertyDescriptor<nsMargin>* aProperty,
bool aNeeded, const nsMargin& aNewValue) {
if (aNeeded) {
if (nsMargin* propValue = aFrame->GetProperty(aProperty)) {
*propValue = aNewValue;
} else {
aFrame->AddProperty(aProperty, new nsMargin(aNewValue));
}
} else {
aFrame->RemoveProperty(aProperty);
}
}
void SizeComputationInput::InitOffsets(WritingMode aCBWM, nscoord aPercentBasis,
LayoutFrameType aFrameType,
ComputeSizeFlags aFlags,
const Maybe<LogicalMargin>& aBorder,
const Maybe<LogicalMargin>& aPadding,
const nsStyleDisplay* aDisplay) {
nsPresContext* presContext = mFrame->PresContext();
// Compute margins from the specified margin style information. These
// become the default computed values, and may be adjusted below
// XXX fix to provide 0,0 for the top&bottom margins for
// inline-non-replaced elements
bool needMarginProp = ComputeMargin(aCBWM, aPercentBasis, aFrameType);
// Note that ComputeMargin() simplistically resolves 'auto' margins to 0.
// In formatting contexts where this isn't correct, some later code will
// need to update the UsedMargin() property with the actual resolved value.
// One example of this is ::CalculateBlockSideMargins().
::UpdateProp(mFrame, nsIFrame::UsedMarginProperty(), needMarginProp,
ComputedPhysicalMargin());
const WritingMode wm = GetWritingMode();
const nsStyleDisplay* disp = mFrame->StyleDisplayWithOptionalParam(aDisplay);
bool needPaddingProp;
LayoutDeviceIntMargin widgetPadding;
if (mIsThemed && presContext->Theme()->GetWidgetPadding(
presContext->DeviceContext(), mFrame,
disp->EffectiveAppearance(), &widgetPadding)) {
const nsMargin padding = LayoutDevicePixel::ToAppUnits(
widgetPadding, presContext->AppUnitsPerDevPixel());
SetComputedLogicalPadding(wm, LogicalMargin(wm, padding));
needPaddingProp = false;
} else if (mFrame->IsInSVGTextSubtree()) {
SetComputedLogicalPadding(wm, LogicalMargin(wm));
needPaddingProp = false;
} else if (aPadding) { // padding is an input arg
SetComputedLogicalPadding(wm, *aPadding);
nsMargin stylePadding;
// If the caller passes a padding that doesn't match our style (like
// nsTextControlFrame might due due to theming), then we also need a
// padding prop.
needPaddingProp = !mFrame->StylePadding()->GetPadding(stylePadding) ||
aPadding->GetPhysicalMargin(wm) != stylePadding;
} else {
needPaddingProp = ComputePadding(aCBWM, aPercentBasis, aFrameType);
}
// Add [align|justify]-content:baseline padding contribution.
typedef const FramePropertyDescriptor<SmallValueHolder<nscoord>>* Prop;
auto ApplyBaselinePadding = [this, wm, &needPaddingProp](LogicalAxis aAxis,
Prop aProp) {
bool found;
nscoord val = mFrame->GetProperty(aProp, &found);
if (found) {
NS_ASSERTION(val != nscoord(0), "zero in this property is useless");
LogicalSide side;
if (val > 0) {
side = MakeLogicalSide(aAxis, LogicalEdge::Start);
} else {
side = MakeLogicalSide(aAxis, LogicalEdge::End);
val = -val;
}
mComputedPadding.Side(side, wm) += val;
needPaddingProp = true;
if (aAxis == LogicalAxis::Block && val > 0) {
// We have a baseline-adjusted block-axis start padding, so
// we need this to mark lines dirty when mIsBResize is true:
this->mFrame->AddStateBits(NS_FRAME_CONTAINS_RELATIVE_BSIZE);
}
}
};
if (!aFlags.contains(ComputeSizeFlag::IsGridMeasuringReflow)) {
ApplyBaselinePadding(LogicalAxis::Block, nsIFrame::BBaselinePadProperty());
}
if (!aFlags.contains(ComputeSizeFlag::ShrinkWrap)) {
ApplyBaselinePadding(LogicalAxis::Inline, nsIFrame::IBaselinePadProperty());
}
LogicalMargin border(wm);
if (mIsThemed) {
const LayoutDeviceIntMargin widgetBorder =
presContext->Theme()->GetWidgetBorder(
presContext->DeviceContext(), mFrame, disp->EffectiveAppearance());
border = LogicalMargin(
wm, LayoutDevicePixel::ToAppUnits(widgetBorder,
presContext->AppUnitsPerDevPixel()));
} else if (mFrame->IsInSVGTextSubtree()) {
// Do nothing since the border local variable is initialized all zero.
} else if (aBorder) { // border is an input arg
border = *aBorder;
} else {
border = LogicalMargin(wm, mFrame->StyleBorder()->GetComputedBorder());
}
SetComputedLogicalBorderPadding(wm, border + ComputedLogicalPadding(wm));
if (aFrameType == LayoutFrameType::Scrollbar) {
// scrollbars may have had their width or height smashed to zero
// by the associated scrollframe, in which case we must not report
// any padding or border.
nsSize size(mFrame->GetSize());
if (size.width == 0 || size.height == 0) {
SetComputedLogicalPadding(wm, LogicalMargin(wm));
SetComputedLogicalBorderPadding(wm, LogicalMargin(wm));
}
}
bool hasPaddingChange;
if (nsMargin* oldPadding =
mFrame->GetProperty(nsIFrame::UsedPaddingProperty())) {
// Note: If a padding change is already detectable without resolving the
// percentage, e.g. a padding is changing from 50px to 50%,
// nsIFrame::DidSetComputedStyle() will cache the old padding in
// UsedPaddingProperty().
hasPaddingChange = *oldPadding != ComputedPhysicalPadding();
} else {
// Our padding may have changed, but we can't tell at this point.
hasPaddingChange = needPaddingProp;
}
// Keep mHasPaddingChange bit set until we've done reflow. We'll clear it in
// nsIFrame::DidReflow()
mFrame->SetHasPaddingChange(mFrame->HasPaddingChange() || hasPaddingChange);
::UpdateProp(mFrame, nsIFrame::UsedPaddingProperty(), needPaddingProp,
ComputedPhysicalPadding());
}
// This code enforces section 10.3.3 of the CSS2 spec for this formula:
//
// 'margin-left' + 'border-left-width' + 'padding-left' + 'width' +
// 'padding-right' + 'border-right-width' + 'margin-right'
// = width of containing block
//
// Note: the width unit is not auto when this is called
void ReflowInput::CalculateBlockSideMargins() {
MOZ_ASSERT(!mFrame->IsTableFrame(),
"Inner table frame cannot have computed margins!");
// Calculations here are done in the containing block's writing mode,
// which is where margins will eventually be applied: we're calculating
// margins that will be used by the container in its inline direction,
// which in the case of an orthogonal contained block will correspond to
// the block direction of this reflow input. So in the orthogonal-flow
// case, "CalculateBlock*Side*Margins" will actually end up adjusting
// the BStart/BEnd margins; those are the "sides" of the block from its
// container's point of view.
WritingMode cbWM = GetCBWritingMode();
nscoord availISizeCBWM = AvailableSize(cbWM).ISize(cbWM);
nscoord computedISizeCBWM = ComputedSize(cbWM).ISize(cbWM);
if (computedISizeCBWM == NS_UNCONSTRAINEDSIZE) {
// For orthogonal flows, where we found a parent orthogonal-limit
// for AvailableISize() in Init(), we don't have meaningful sizes to
// adjust. Act like the sum is already correct (below).
return;
}
LAYOUT_WARN_IF_FALSE(NS_UNCONSTRAINEDSIZE != computedISizeCBWM &&
NS_UNCONSTRAINEDSIZE != availISizeCBWM,
"have unconstrained inline-size; this should only "
"result from very large sizes, not attempts at "
"intrinsic inline-size calculation");
LogicalMargin margin = ComputedLogicalMargin(cbWM);
LogicalMargin borderPadding = ComputedLogicalBorderPadding(cbWM);
nscoord sum = margin.IStartEnd(cbWM) + borderPadding.IStartEnd(cbWM) +
computedISizeCBWM;
if (sum == availISizeCBWM) {
// The sum is already correct
return;
}
// Determine the start and end margin values. The isize value
// remains constant while we do this.
// Calculate how much space is available for margins
nscoord availMarginSpace = availISizeCBWM - sum;
// If the available margin space is negative, then don't follow the
// usual overconstraint rules.
if (availMarginSpace < 0) {
margin.IEnd(cbWM) += availMarginSpace;
SetComputedLogicalMargin(cbWM, margin);
return;
}
// The css2 spec clearly defines how block elements should behave
// in section 10.3.3.
bool isAutoStartMargin =
mStyleMargin->GetMargin(LogicalSide::IStart, cbWM).IsAuto();
bool isAutoEndMargin =
mStyleMargin->GetMargin(LogicalSide::IEnd, cbWM).IsAuto();
if (!isAutoStartMargin && !isAutoEndMargin) {
// Neither margin is 'auto' so we're over constrained. Use the
// 'direction' property of the parent to tell which margin to
// ignore
// First check if there is an HTML alignment that we should honor
const StyleTextAlign* textAlign =
mParentReflowInput
? &mParentReflowInput->mFrame->StyleText()->mTextAlign
: nullptr;
if (textAlign && (*textAlign == StyleTextAlign::MozLeft ||
*textAlign == StyleTextAlign::MozCenter ||
*textAlign == StyleTextAlign::MozRight)) {
if (mParentReflowInput->mWritingMode.IsBidiLTR()) {
isAutoStartMargin = *textAlign != StyleTextAlign::MozLeft;
isAutoEndMargin = *textAlign != StyleTextAlign::MozRight;
} else {
isAutoStartMargin = *textAlign != StyleTextAlign::MozRight;
isAutoEndMargin = *textAlign != StyleTextAlign::MozLeft;
}
}
// Otherwise apply the CSS rules, and ignore one margin by forcing
// it to 'auto', depending on 'direction'.
else {
isAutoEndMargin = true;
}
}
// Logic which is common to blocks and tables
// The computed margins need not be zero because the 'auto' could come from
// overconstraint or from HTML alignment so values need to be accumulated
if (isAutoStartMargin) {
if (isAutoEndMargin) {
// Both margins are 'auto' so the computed addition should be equal
nscoord forStart = availMarginSpace / 2;
margin.IStart(cbWM) += forStart;
margin.IEnd(cbWM) += availMarginSpace - forStart;
} else {
margin.IStart(cbWM) += availMarginSpace;
}
} else if (isAutoEndMargin) {
margin.IEnd(cbWM) += availMarginSpace;
}
SetComputedLogicalMargin(cbWM, margin);
if (isAutoStartMargin || isAutoEndMargin) {
// Update the UsedMargin property if we were tracking it already.
nsMargin* propValue = mFrame->GetProperty(nsIFrame::UsedMarginProperty());
if (propValue) {
*propValue = margin.GetPhysicalMargin(cbWM);
}
}
}
// For "normal" we use the font's normal line height (em height + leading).
// If both internal leading and external leading specified by font itself are
// zeros, we should compensate this by creating extra (external) leading.
// This is necessary because without this compensation, normal line height might
// look too tight.
static nscoord GetNormalLineHeight(nsFontMetrics* aFontMetrics) {
MOZ_ASSERT(aFontMetrics, "no font metrics");
nscoord externalLeading = aFontMetrics->ExternalLeading();
nscoord internalLeading = aFontMetrics->InternalLeading();
nscoord emHeight = aFontMetrics->EmHeight();
if (!internalLeading && !externalLeading) {
return NSToCoordRound(static_cast<float>(emHeight) *
ReflowInput::kNormalLineHeightFactor);
}
return emHeight + internalLeading + externalLeading;
}
static inline nscoord ComputeLineHeight(const StyleLineHeight& aLh,
const nsFont& aFont, nsAtom* aLanguage,
bool aExplicitLanguage,
nsPresContext* aPresContext,
bool aIsVertical, nscoord aBlockBSize,
float aFontSizeInflation) {
if (aLh.IsLength()) {
nscoord result = aLh.AsLength().ToAppUnits();
if (aFontSizeInflation != 1.0f) {
result = NSToCoordRound(static_cast<float>(result) * aFontSizeInflation);
}
return result;
}
if (aLh.IsNumber()) {
// For factor units the computed value of the line-height property
// is found by multiplying the factor by the font's computed size
// (adjusted for min-size prefs and text zoom).
return aFont.size.ScaledBy(aLh.AsNumber() * aFontSizeInflation)
.ToAppUnits();
}
MOZ_ASSERT(aLh.IsNormal() || aLh.IsMozBlockHeight());
if (aLh.IsMozBlockHeight() && aBlockBSize != NS_UNCONSTRAINEDSIZE) {
return aBlockBSize;
}
auto size = aFont.size;
size.ScaleBy(aFontSizeInflation);
if (aPresContext) {
nsFont font = aFont;
font.size = size;
nsFontMetrics::Params params;
params.language = aLanguage;
params.explicitLanguage = aExplicitLanguage;
params.orientation =
aIsVertical ? nsFontMetrics::eVertical : nsFontMetrics::eHorizontal;
params.userFontSet = aPresContext->GetUserFontSet();
params.textPerf = aPresContext->GetTextPerfMetrics();
params.featureValueLookup = aPresContext->GetFontFeatureValuesLookup();
RefPtr<nsFontMetrics> fm = aPresContext->GetMetricsFor(font, params);
return GetNormalLineHeight(fm);
}
// If we don't have a pres context, use a 1.2em fallback.
size.ScaleBy(ReflowInput::kNormalLineHeightFactor);
return size.ToAppUnits();
}
nscoord ReflowInput::GetLineHeight() const {
if (mLineHeight != NS_UNCONSTRAINEDSIZE) {
return mLineHeight;
}
nscoord blockBSize = nsLayoutUtils::IsNonWrapperBlock(mFrame)
? ComputedBSize()
: (mCBReflowInput ? mCBReflowInput->ComputedBSize()
: NS_UNCONSTRAINEDSIZE);
mLineHeight = CalcLineHeight(*mFrame->Style(), mFrame->PresContext(),
mFrame->GetContent(), blockBSize,
nsLayoutUtils::FontSizeInflationFor(mFrame));
return mLineHeight;
}
void ReflowInput::SetLineHeight(nscoord aLineHeight) {
MOZ_ASSERT(aLineHeight >= 0, "aLineHeight must be >= 0!");
if (mLineHeight != aLineHeight) {
mLineHeight = aLineHeight;
// Setting used line height can change a frame's block-size if mFrame's
// block-size behaves as auto.
InitResizeFlags(mFrame->PresContext(), mFrame->Type());
}
}
/* static */
nscoord ReflowInput::CalcLineHeight(const ComputedStyle& aStyle,
nsPresContext* aPresContext,
const nsIContent* aContent,
nscoord aBlockBSize,
float aFontSizeInflation) {
const StyleLineHeight& lh = aStyle.StyleFont()->mLineHeight;
WritingMode wm(&aStyle);
const bool vertical = wm.IsVertical() && !wm.IsSideways();
return CalcLineHeight(lh, *aStyle.StyleFont(), aPresContext, vertical,
aContent, aBlockBSize, aFontSizeInflation);
}
nscoord ReflowInput::CalcLineHeight(
const StyleLineHeight& aLh, const nsStyleFont& aRelativeToFont,
nsPresContext* aPresContext, bool aIsVertical, const nsIContent* aContent,
nscoord aBlockBSize, float aFontSizeInflation) {
nscoord lineHeight =
ComputeLineHeight(aLh, aRelativeToFont.mFont, aRelativeToFont.mLanguage,
aRelativeToFont.mExplicitLanguage, aPresContext,
aIsVertical, aBlockBSize, aFontSizeInflation);
NS_ASSERTION(lineHeight >= 0, "ComputeLineHeight screwed up");
const auto* input = HTMLInputElement::FromNodeOrNull(aContent);
if (input && input->IsSingleLineTextControl()) {
// For Web-compatibility, single-line text input elements cannot
// have a line-height smaller than 'normal'.
if (!aLh.IsNormal()) {
nscoord normal = ComputeLineHeight(
StyleLineHeight::Normal(), aRelativeToFont.mFont,
aRelativeToFont.mLanguage, aRelativeToFont.mExplicitLanguage,
aPresContext, aIsVertical, aBlockBSize, aFontSizeInflation);
if (lineHeight < normal) {
lineHeight = normal;
}
}
}
return lineHeight;
}
nscoord ReflowInput::CalcLineHeightForCanvas(const StyleLineHeight& aLh,
const nsFont& aRelativeToFont,
nsAtom* aLanguage,
bool aExplicitLanguage,
nsPresContext* aPresContext,
WritingMode aWM) {
return ComputeLineHeight(aLh, aRelativeToFont, aLanguage, aExplicitLanguage,
aPresContext, aWM.IsVertical() && !aWM.IsSideways(),
NS_UNCONSTRAINEDSIZE, 1.0f);
}
bool SizeComputationInput::ComputeMargin(WritingMode aCBWM,
nscoord aPercentBasis,
LayoutFrameType aFrameType) {
// SVG text frames have no margin.
if (mFrame->IsInSVGTextSubtree()) {
return false;
}
if (aFrameType == LayoutFrameType::Table) {
// Table frame's margin is inherited to the table wrapper frame via the
// ::-moz-table-wrapper rule in ua.css, so don't set any margins for it.
SetComputedLogicalMargin(mWritingMode, LogicalMargin(mWritingMode));
return false;
}
// If style style can provide us the margin directly, then use it.
const nsStyleMargin* styleMargin = mFrame->StyleMargin();
nsMargin margin;
const bool isCBDependent = !styleMargin->GetMargin(margin);
if (isCBDependent) {
// We have to compute the value. Note that this calculation is
// performed according to the writing mode of the containing block
if (aPercentBasis == NS_UNCONSTRAINEDSIZE) {
aPercentBasis = 0;
}
LogicalMargin m(aCBWM);
for (const LogicalSide side : LogicalSides::All) {
m.Side(side, aCBWM) = nsLayoutUtils::ComputeCBDependentValue(
aPercentBasis, styleMargin->GetMargin(side, aCBWM));
}
SetComputedLogicalMargin(aCBWM, m);
} else {
SetComputedLogicalMargin(mWritingMode, LogicalMargin(mWritingMode, margin));
}
// ... but font-size-inflation-based margin adjustment uses the
// frame's writing mode
nscoord marginAdjustment = FontSizeInflationListMarginAdjustment(mFrame);
if (marginAdjustment > 0) {
LogicalMargin m = ComputedLogicalMargin(mWritingMode);
m.IStart(mWritingMode) += marginAdjustment;
SetComputedLogicalMargin(mWritingMode, m);
}
return isCBDependent;
}
bool SizeComputationInput::ComputePadding(WritingMode aCBWM,
nscoord aPercentBasis,
LayoutFrameType aFrameType) {
// If style can provide us the padding directly, then use it.
const nsStylePadding* stylePadding = mFrame->StylePadding();
nsMargin padding;
bool isCBDependent = !stylePadding->GetPadding(padding);
// a table row/col group, row/col doesn't have padding
// XXXldb Neither do border-collapse tables.
if (LayoutFrameType::TableRowGroup == aFrameType ||
LayoutFrameType::TableColGroup == aFrameType ||
LayoutFrameType::TableRow == aFrameType ||
LayoutFrameType::TableCol == aFrameType) {
SetComputedLogicalPadding(mWritingMode, LogicalMargin(mWritingMode));
} else if (isCBDependent) {
// We have to compute the value. This calculation is performed
// according to the writing mode of the containing block
// clamp negative calc() results to 0
if (aPercentBasis == NS_UNCONSTRAINEDSIZE) {
aPercentBasis = 0;
}
LogicalMargin p(aCBWM);
for (const LogicalSide side : LogicalSides::All) {
p.Side(side, aCBWM) = std::max(
0, nsLayoutUtils::ComputeCBDependentValue(
aPercentBasis, stylePadding->mPadding.Get(side, aCBWM)));
}
SetComputedLogicalPadding(aCBWM, p);
} else {
SetComputedLogicalPadding(mWritingMode,
LogicalMargin(mWritingMode, padding));
}
return isCBDependent;
}
void ReflowInput::ComputeMinMaxValues(const LogicalSize& aCBSize) {
WritingMode wm = GetWritingMode();
const auto& minISize = mStylePosition->MinISize(wm);
const auto& maxISize = mStylePosition->MaxISize(wm);
const auto& minBSize = mStylePosition->MinBSize(wm);
const auto& maxBSize = mStylePosition->MaxBSize(wm);
LogicalSize minWidgetSize(wm);
if (mIsThemed) {
nsPresContext* pc = mFrame->PresContext();
const LayoutDeviceIntSize widget = pc->Theme()->GetMinimumWidgetSize(
pc, mFrame, mStyleDisplay->EffectiveAppearance());
// Convert themed widget's physical dimensions to logical coords.
minWidgetSize = {
wm, LayoutDeviceIntSize::ToAppUnits(widget, pc->AppUnitsPerDevPixel())};
// GetMinimumWidgetSize() returns border-box; we need content-box.
minWidgetSize -= ComputedLogicalBorderPadding(wm).Size(wm);
}
// NOTE: min-width:auto resolves to 0, except on a flex item. (But
// even there, it's supposed to be ignored (i.e. treated as 0) until
// the flex container explicitly resolves & considers it.)
if (minISize.IsAuto()) {
SetComputedMinISize(0);
} else {
SetComputedMinISize(
ComputeISizeValue(aCBSize, mStylePosition->mBoxSizing, minISize));
}
if (mIsThemed) {
SetComputedMinISize(std::max(ComputedMinISize(), minWidgetSize.ISize(wm)));
}
if (maxISize.IsNone()) {
// Specified value of 'none'
SetComputedMaxISize(NS_UNCONSTRAINEDSIZE);
} else {
SetComputedMaxISize(
ComputeISizeValue(aCBSize, mStylePosition->mBoxSizing, maxISize));
}
// If the computed value of 'min-width' is greater than the value of
// 'max-width', 'max-width' is set to the value of 'min-width'
if (ComputedMinISize() > ComputedMaxISize()) {
SetComputedMaxISize(ComputedMinISize());
}
// Check for percentage based values and a containing block height that
// depends on the content height. Treat them like the initial value.
// Likewise, check for calc() with percentages on internal table elements;
// that's treated as the initial value too.
const bool isInternalTableFrame = IsInternalTableFrame();
const nscoord& bPercentageBasis = aCBSize.BSize(wm);
auto BSizeBehavesAsInitialValue = [&](const auto& aBSize) {
if (nsLayoutUtils::IsAutoBSize(aBSize, bPercentageBasis)) {
return true;
}
if (isInternalTableFrame) {
return aBSize.HasLengthAndPercentage();
}
return false;
};
// NOTE: min-height:auto resolves to 0, except on a flex item. (But
// even there, it's supposed to be ignored (i.e. treated as 0) until
// the flex container explicitly resolves & considers it.)
if (BSizeBehavesAsInitialValue(minBSize)) {
SetComputedMinBSize(0);
} else {
SetComputedMinBSize(ComputeBSizeValue(bPercentageBasis,
mStylePosition->mBoxSizing,
minBSize.AsLengthPercentage()));
}
if (mIsThemed) {
SetComputedMinBSize(std::max(ComputedMinBSize(), minWidgetSize.BSize(wm)));
}
if (BSizeBehavesAsInitialValue(maxBSize)) {
// Specified value of 'none'
SetComputedMaxBSize(NS_UNCONSTRAINEDSIZE);
} else {
SetComputedMaxBSize(ComputeBSizeValue(bPercentageBasis,
mStylePosition->mBoxSizing,
maxBSize.AsLengthPercentage()));
}
// If the computed value of 'min-height' is greater than the value of
// 'max-height', 'max-height' is set to the value of 'min-height'
if (ComputedMinBSize() > ComputedMaxBSize()) {
SetComputedMaxBSize(ComputedMinBSize());
}
}
bool ReflowInput::IsInternalTableFrame() const {
return mFrame->IsTableRowGroupFrame() || mFrame->IsTableColGroupFrame() ||
mFrame->IsTableRowFrame() || mFrame->IsTableCellFrame();
}