Source code
Revision control
Copy as Markdown
Other Tools
// |jit-test| skip-if: !wasmThreadsEnabled()
const oob = /index out of bounds/;
const unaligned = /unaligned memory access/;
const RuntimeError = WebAssembly.RuntimeError;
function valText(text) {
return WebAssembly.validate(wasmTextToBinary(text));
}
function assertNum(a, b) {
if (typeof a == "number" && typeof b == "number")
assertEq(a, b);
else if (typeof a == "number") {
assertEq(a, b.low);
assertEq(0, b.high);
} else if (typeof b == "number") {
assertEq(a.low, b);
assertEq(a.high, 0);
} else {
assertEq(a.high, b.high);
assertEq(a.low, b.low);
}
}
// Check that the output of wasmTextToBinary verifies correctly.
for ( let shared of ['shared', ''] ) {
for (let [type,width,view] of [['i32','8', '_u'],['i32','16','_u'],['i32','',''],['i64','8','_u'],['i64','16','_u'],['i64','32','_u'],['i64','','']]) {
{
let text = (shared) => `(module (memory 1 1 ${shared})
(func (result ${type}) (${type}.atomic.load${width}${view} (i32.const 0)))
(export "" (func 0)))`;
assertEq(valText(text(shared)), true);
}
{
let text = (shared) => `(module (memory 1 1 ${shared})
(func (${type}.atomic.store${width} (i32.const 0) (${type}.const 1)))
(export "" (func 0)))`;
assertEq(valText(text(shared)), true);
}
{
let text = (shared) => `(module (memory 1 1 ${shared})
(func (result ${type})
(${type}.atomic.rmw${width}.cmpxchg${view} (i32.const 0) (${type}.const 1) (${type}.const 2)))
(export "" (func 0)))`;
assertEq(valText(text(shared)), true);
}
for (let op of ['add','and','or','sub','xor','xchg']) {
// Operate with appropriately-typed value 1 on address 0
let text = (shared) => `(module (memory 1 1 ${shared})
(func (result ${type}) (${type}.atomic.rmw${width}.${op}${view} (i32.const 0) (${type}.const 1)))
(export "" (func 0)))`;
assertEq(valText(text(shared)), true);
}
}
for (let type of ['i32', 'i64']) {
let text = (shared) => `(module (memory 1 1 ${shared})
(func (result i32) (memory.atomic.wait${type.slice(1)} (i32.const 0) (${type}.const 1) (i64.const -1)))
(export "" (func 0)))`;
assertEq(valText(text(shared)), true);
}
let text = (shared) => `(module (memory 1 1 ${shared})
(func (result i32) \(memory.atomic.notify (i32.const 0) (i32.const 1)))
(export "" (func 0)))`;
assertEq(valText(text(shared)), true);
// Required explicit alignment for WAIT is the size of the datum
for (let [type,align,good] of [['i32',1,false],['i32',2,false],['i32',4,true],['i32',8,false],
['i64',1,false],['i64',2,false],['i64',4,false],['i64',8,true]])
{
let text = `(module (memory 1 1 shared)
(func (result i32) (memory.atomic.wait${type.slice(1)} align=${align} (i32.const 0) (${type}.const 1) (i64.const -1)))
(export "" (func 0)))`;
assertEq(valText(text), good);
}
// Required explicit alignment for NOTIFY is 4
for (let align of [1, 2, 4, 8]) {
let text = `(module (memory 1 1 shared)
(func (result i32) \(memory.atomic.notify align=${align} (i32.const 0) (i32.const 1)))
(export "" (func 0)))`;
assertEq(valText(text), align == 4);
}
}
// Test that atomic operations work.
function I64(hi, lo) {
this.high = hi;
this.low = lo;
}
I64.prototype.toString = function () {
return "(" + this.high.toString(16) + " " + this.low.toString(16) + ")";
}
function Uint64Array(arg) {
let buffer = arg;
if (typeof arg == "number")
buffer = new ArrayBuffer(arg*8);
this.buf = buffer;
this.elem = new Uint32Array(buffer);
}
Uint64Array.BYTES_PER_ELEMENT = 8;
Uint8Array.prototype.read = function (n) { return this[n] }
Uint16Array.prototype.read = function (n) { return this[n] }
Uint32Array.prototype.read = function (n) { return this[n] }
Uint64Array.prototype.read = function (n) {
return new I64(this.elem[n*2+1], this.elem[n*2]);
}
Uint8Array.prototype.write = function (n,v) { this[n] = v }
Uint16Array.prototype.write = function (n,v) { this[n] = v }
Uint32Array.prototype.write = function (n,v) { this[n] = v}
Uint64Array.prototype.write = function (n,v) {
if (typeof v == "number") {
// Note, this chops v if v is too large
this.elem[n*2] = v;
this.elem[n*2+1] = 0;
} else {
this.elem[n*2] = v.low;
this.elem[n*2+1] = v.high;
}
}
// Widen a one-byte value to a k-byte value where k is TA's width.
// Complementation leads to better error checking, probably.
function widen(TA, value, complement = true) {
let n = value;
let s = "";
for ( let i=0; i < Math.min(TA.BYTES_PER_ELEMENT, 4); i++ ) {
let v = (256 + n).toString(16);
s = s + v.substring(v.length-2);
if (complement)
n = ~n;
}
if (TA.BYTES_PER_ELEMENT == 8)
s = s + s;
s = "0x" + s;
n = value;
let num = 0;
for ( let i=0; i < Math.min(TA.BYTES_PER_ELEMENT, 4); i++ ) {
num = (num << 8) | (n & 255);
if (complement)
n = ~n;
}
num = num >>> 0;
if (TA.BYTES_PER_ELEMENT == 8) {
return [s, new I64(num, num)];
} else {
return [s, num];
}
}
// Atomic RMW ops are sometimes used for effect, sometimes for their value, and
// in SpiderMonkey code generation differs for the two cases, so we need to test
// both. Also, there may be different paths for constant addresses/operands and
// variable ditto, so test as many combinations as possible.
for ( let shared of ['shared',''] ) {
let RMWOperation = {
loadStoreModule(type, width, view, address, operand) {
let bin = wasmTextToBinary(
`(module
(memory (import "" "memory") 1 1 ${shared})
(func (export "st") (param i32)
(${type}.atomic.store${width} ${address} ${operand}))
(func $ld (param i32) (result ${type})
(${type}.atomic.load${width}${view} ${address}))
(func (export "ld") (param i32) (result i32)
(${type}.eq (call $ld (local.get 0)) ${operand})))`);
let mod = new WebAssembly.Module(bin);
let mem = new WebAssembly.Memory({initial: 1, maximum: 1, shared});
let ins = new WebAssembly.Instance(mod, {"": {memory: mem}});
return [mem, ins.exports.ld, ins.exports.st];
},
opModuleEffect(type, width, view, address, op, operand, ignored) {
let bin = wasmTextToBinary(
`(module
(memory (import "" "memory") 1 1 ${shared})
(func (export "f") (param i32) (result i32)
(drop (${type}.atomic.rmw${width}.${op}${view} ${address} ${operand}))
(i32.const 1)))`);
let mod = new WebAssembly.Module(bin);
let mem = new WebAssembly.Memory({initial: 1, maximum: 1, shared});
let ins = new WebAssembly.Instance(mod, {"": {memory: mem}});
return [mem, ins.exports.f];
},
opModuleReturned(type, width, view, address, op, operand, expected) {
let bin = wasmTextToBinary(
`(module
(memory (import "" "memory") 1 1 ${shared})
(func $_f (param i32) (result ${type})
(${type}.atomic.rmw${width}.${op}${view} ${address} ${operand}))
(func (export "f") (param i32) (result i32)
(${type}.eq (call $_f (local.get 0)) (${type}.const ${expected}))))`);
let mod = new WebAssembly.Module(bin);
let mem = new WebAssembly.Memory({initial: 1, maximum: 1, shared});
let ins = new WebAssembly.Instance(mod, {"": {memory: mem}});
return [mem, ins.exports.f];
},
cmpxchgModuleEffect(type, width, view, address, operand1, operand2, ignored) {
let bin = wasmTextToBinary(
`(module
(memory (import "" "memory") 1 1 ${shared})
(func (export "f") (param i32)
(drop (${type}.atomic.rmw${width}.cmpxchg${view} ${address} ${operand1} ${operand2}))))`);
let mod = new WebAssembly.Module(bin);
let mem = new WebAssembly.Memory({initial: 1, maximum: 1, shared});
let ins = new WebAssembly.Instance(mod, {"": {memory: mem}});
return [mem, ins.exports.f];
},
cmpxchgModuleReturned(type, width, view, address, operand1, operand2, expected) {
let bin = wasmTextToBinary(
`(module
(memory (import "" "memory") 1 1 ${shared})
(func $_f (param i32) (result ${type})
(${type}.atomic.rmw${width}.cmpxchg${view} ${address} ${operand1} ${operand2}))
(func (export "f") (param i32) (result i32)
(${type}.eq (call $_f (local.get 0)) (${type}.const ${expected}))))`);
let mod = new WebAssembly.Module(bin);
let mem = new WebAssembly.Memory({initial: 1, maximum: 1, shared});
let ins = new WebAssembly.Instance(mod, {"": {memory: mem}});
return [mem, ins.exports.f];
},
assertZero(array, LOC) {
for ( let i=0 ; i < 100 ; i++ ) {
if (i != LOC)
assertNum(array.read(i), 0);
}
},
run() {
const LOC = 13; // The cell we operate on
const OPD1 = 37; // Sometimes we'll put an operand here
const OPD2 = 42; // Sometimes we'll put another operand here
for ( let [type, variations] of
[["i32", [[Uint8Array,"8", "_u"], [Uint16Array,"16", "_u"], [Uint32Array,"",""]]],
["i64", [[Uint8Array,"8","_u"], [Uint16Array,"16","_u"], [Uint32Array,"32","_u"], [Uint64Array,"",""]]]] )
{
for ( let [TA, width, view] of variations )
{
for ( let addr of [`(i32.const ${LOC * TA.BYTES_PER_ELEMENT})`,
`(local.get 0)`] )
{
for ( let [initial, operand] of [[0x12, 0x37]] )
{
let [opd_str, opd_num] = widen(TA, operand);
for ( let rhs of [`(${type}.const ${opd_str})`,
`(${type}.load${width}${view} (i32.const ${OPD1 * TA.BYTES_PER_ELEMENT}))`] )
{
let [mem, ld, st] = this.loadStoreModule(type, width, view, addr, rhs);
let array = new TA(mem.buffer);
array.write(OPD1, opd_num);
array.write(LOC, initial);
st(LOC * TA.BYTES_PER_ELEMENT);
let res = ld(LOC * TA.BYTES_PER_ELEMENT);
assertEq(res, 1);
assertNum(array.read(LOC), opd_num);
array.write(OPD1, 0);
this.assertZero(array, LOC);
}
}
for ( let [op, initial, operand, expected] of [["add", 37, 5, 42],
["sub", 42, 5, 37],
["and", 0x45, 0x13, 0x01],
["or", 0x45, 0x13, 0x57],
["xor", 0x45, 0x13, 0x56],
["xchg", 0x45, 0x13, 0x13]] )
{
let complement = op == "xchg";
let [ini_str, ini_num] = widen(TA, initial, complement);
let [opd_str, opd_num] = widen(TA, operand, complement);
let [exp_str, exp_num] = widen(TA, expected, complement);
for ( let rhs of [`(${type}.const ${opd_str})`,
`(${type}.load${width}${view} (i32.const ${OPD1 * TA.BYTES_PER_ELEMENT}))`] )
{
for ( let [generateIt, checkIt] of [["opModuleEffect", false], ["opModuleReturned", true]] )
{
let [mem, f] = this[generateIt](type, width, view, addr, op, rhs, ini_str);
let array = new TA(mem.buffer);
array.write(OPD1, opd_num);
array.write(LOC, ini_num);
let res = f(LOC * TA.BYTES_PER_ELEMENT);
if (checkIt)
assertEq(res, 1);
assertNum(array.read(LOC), exp_num);
array.write(OPD1, 0);
this.assertZero(array, LOC);
}
}
}
for ( let [initial, operand1, operand2, expected] of [[33, 33, 44, 44], [33, 44, 55, 33]] )
{
let [ini_str, ini_num] = widen(TA, initial);
let [opd1_str, opd1_num] = widen(TA, operand1);
let [opd2_str, opd2_num] = widen(TA, operand2);
let [exp_str, exp_num] = widen(TA, expected);
for ( let op1 of [`(${type}.const ${opd1_str})`,
`(${type}.load${width}${view} (i32.const ${OPD1 * TA.BYTES_PER_ELEMENT}))`] )
{
for ( let op2 of [`(${type}.const ${opd2_str})`,
`(${type}.load${width}${view} (i32.const ${OPD2 * TA.BYTES_PER_ELEMENT}))`] )
{
for ( let [generateIt, checkIt] of [["cmpxchgModuleEffect", false], ["cmpxchgModuleReturned", true]] )
{
let [mem, f] = this[generateIt](type, width, view, addr, op1, op2, ini_str);
let array = new TA(mem.buffer);
array.write(OPD1, opd1_num);
array.write(OPD2, opd2_num);
array.write(LOC, ini_num);
let res = f(LOC * TA.BYTES_PER_ELEMENT);
if (checkIt)
assertEq(res, 1);
assertNum(array.read(13), exp_num);
array.write(OPD1, 0);
array.write(OPD2, 0);
this.assertZero(array, LOC);
}
}
}
}
}
}
}
}
};
RMWOperation.run();
}
// Test bounds and alignment checking on atomic ops
for ( let shared of ['shared',''] ) {
var BoundsAndAlignment = {
loadModule(type, view, width, offset) {
return wasmEvalText(
`(module
(memory 1 1 ${shared})
(func $0 (param i32) (result ${type})
(${type}.atomic.load${width}${view} offset=${offset} (local.get 0)))
(func (export "f") (param i32)
(drop (call $0 (local.get 0)))))
`).exports.f;
},
loadModuleIgnored(type, view, width, offset) {
return wasmEvalText(
`(module
(memory 1 1 ${shared})
(func (export "f") (param i32)
(drop (${type}.atomic.load${width}${view} offset=${offset} (local.get 0)))))
`).exports.f;
},
storeModule(type, view, width, offset) {
return wasmEvalText(
`(module
(memory 1 1 ${shared})
(func (export "f") (param i32)
(${type}.atomic.store${width} offset=${offset} (local.get 0) (${type}.const 37))))
`).exports.f;
},
opModule(type, view, width, offset, op) {
return wasmEvalText(
`(module
(memory 1 1 ${shared})
(func $0 (param i32) (result ${type})
(${type}.atomic.rmw${width}.${op}${view} offset=${offset} (local.get 0) (${type}.const 37)))
(func (export "f") (param i32)
(drop (call $0 (local.get 0)))))
`).exports.f;
},
opModuleForEffect(type, view, width, offset, op) {
return wasmEvalText(
`(module
(memory 1 1 ${shared})
(func (export "f") (param i32)
(drop (${type}.atomic.rmw${width}.${op}${view} offset=${offset} (local.get 0) (${type}.const 37)))))
`).exports.f;
},
cmpxchgModule(type, view, width, offset) {
return wasmEvalText(
`(module
(memory 1 1 ${shared})
(func $0 (param i32) (result ${type})
(${type}.atomic.rmw${width}.cmpxchg${view} offset=${offset} (local.get 0) (${type}.const 37) (${type}.const 42)))
(func (export "f") (param i32)
(drop (call $0 (local.get 0)))))
`).exports.f;
},
run() {
for ( let [type, variations] of [["i32", [["8","_u", 1], ["16","_u", 2], ["","", 4]]],
["i64", [["8","_u",1], ["16","_u",2], ["32","_u",4], ["","",8]]]] )
{
for ( let [width,view,size] of variations )
{
// Aligned but out-of-bounds
let addrs = [[65536, 0, oob], [65536*2, 0, oob], [65532, 4, oob],
[65533, 3, oob], [65534, 2, oob], [65535, 1, oob]];
if (type == "i64")
addrs.push([65536-8, 8, oob]);
// In-bounds but unaligned
for ( let i=1 ; i < size ; i++ )
addrs.push([65520, i, unaligned]);
// Both out-of-bounds and unaligned. The spec leaves it unspecified
// whether we see the OOB message or the unaligned message (they are
// both "traps"). In Firefox, the unaligned check comes first.
for ( let i=1 ; i < size ; i++ )
addrs.push([65536, i, unaligned]);
// GC to prevent TSan builds from running out of memory.
gc();
for ( let [ base, offset, re ] of addrs )
{
assertErrorMessage(() => this.loadModule(type, view, width, offset)(base), RuntimeError, re);
assertErrorMessage(() => this.loadModuleIgnored(type, view, width, offset)(base), RuntimeError, re);
assertErrorMessage(() => this.storeModule(type, view, width, offset)(base), RuntimeError, re);
for ( let op of [ "add", "sub", "and", "or", "xor", "xchg" ]) {
assertErrorMessage(() => this.opModule(type, view, width, offset, op)(base), RuntimeError, re);
assertErrorMessage(() => this.opModuleForEffect(type, view, width, offset, op)(base), RuntimeError, re);
}
assertErrorMessage(() => this.cmpxchgModule(type, view, width, offset)(base), RuntimeError, re);
}
}
}
}
}
BoundsAndAlignment.run();
}
// Bounds and alignment checks on wait and notify
// For 'wait', we check bounds and alignment after sharedness, so the memory
// must be shared always.
assertErrorMessage(() => wasmEvalText(`(module (memory 1 1 shared)
(func (param i32) (result i32)
(memory.atomic.wait32 (local.get 0) (i32.const 1) (i64.const -1)))
(export "" (func 0)))`).exports[""](65536),
RuntimeError, oob);
assertErrorMessage(() => wasmEvalText(`(module (memory 1 1 shared)
(func (param i32) (result i32)
(memory.atomic.wait64 (local.get 0) (i64.const 1) (i64.const -1)))
(export "" (func 0)))`).exports[""](65536),
RuntimeError, oob);
assertErrorMessage(() => wasmEvalText(`(module (memory 1 1 shared)
(func (param i32) (result i32)
(memory.atomic.wait32 (local.get 0) (i32.const 1) (i64.const -1)))
(export "" (func 0)))`).exports[""](65501),
RuntimeError, unaligned);
assertErrorMessage(() => wasmEvalText(`(module (memory 1 1 shared)
(func (param i32) (result i32)
(memory.atomic.wait64 (local.get 0) (i64.const 1) (i64.const -1)))
(export "" (func 0)))`).exports[""](65501),
RuntimeError, unaligned);
// For 'notify', we check bounds and alignment before returning 0 in the case of
// non-shared memory, so both shared and non-shared memories must be checked.
for ( let shared of ['shared',''] ) {
assertErrorMessage(() => wasmEvalText(`(module (memory 1 1 ${shared})
(func (param i32) (result i32)
\(memory.atomic.notify (local.get 0) (i32.const 1)))
(export "" (func 0)))`).exports[""](65536),
RuntimeError, oob);
// Minimum run-time alignment for NOTIFY is 4
for (let addr of [1,2,3,5,6,7]) {
assertErrorMessage(() => wasmEvalText(`(module (memory 1 1 ${shared})
(func (export "f") (param i32) (result i32)
\(memory.atomic.notify (local.get 0) (i32.const 1))))`).exports.f(addr),
RuntimeError, unaligned);
}
}
// Sharedness check for wait
assertErrorMessage(() => wasmEvalText(`(module (memory 1 1)
(func (param i32) (result i32)
(memory.atomic.wait32 (local.get 0) (i32.const 1) (i64.const -1)))
(export "" (func 0)))`).exports[""](0),
RuntimeError, /atomic wait on non-shared memory/);
// Ensure that notify works on non-shared memories and returns zero.
assertEq(wasmEvalText(`
(module (memory 1 1)
(func (export "f") (param i32) (result i32)
\(memory.atomic.notify (local.get 0) (i32.const 1))))
`).exports.f(256), 0);
// Ensure alias analysis works even if atomic and non-atomic accesses are
// mixed.
assertErrorMessage(() => wasmEvalText(`(module
(memory 0 1 shared)
(func (export "main")
i32.const 1
i32.const 2816
i32.atomic.rmw16.xchg_u align=2
i32.load16_s offset=83 align=1
drop
)
)`).exports.main(), RuntimeError, unaligned);
// Make sure we can handle wait and notify without memory
var nomem = /memory index out of range/;
assertErrorMessage(() => new WebAssembly.Module(wasmTextToBinary(`
(module
(func (result i32)
\(memory.atomic.notify (i32.const 0) (i32.const 1))))`)),
WebAssembly.CompileError,
nomem);
assertErrorMessage(() => new WebAssembly.Module(wasmTextToBinary(`
(module
(func (result i32)
(memory.atomic.wait32 (i32.const 0) (i32.const 1) (i64.const -1))))`)),
WebAssembly.CompileError,
nomem);
assertErrorMessage(() => new WebAssembly.Module(wasmTextToBinary(`
(module
(func (result i32)
(memory.atomic.wait64 (i32.const 0) (i64.const 1) (i64.const -1))))`)),
WebAssembly.CompileError,
nomem);